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Fanconi-like crosslink repair in yeast
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Abstract

Interstrand crosslinks covalently link complementary DNA strands, block replication and transcription, and can trigger
cell death. In eukaryotic systems several pathways, including the Fanconi Anemia pathway, are involved in repairing
interstrand crosslinks, but their precise mechanisms remain enigmatic. The lack of functional homologs in simpler
model organisms has significantly hampered progress in this field. Two recent studies have finally identified a
Fanconi-like interstrand crosslink repair pathway in yeast. Future studies in this simplistic model organism promise to
greatly improve our basic understanding of complex interstrand crosslink repair pathways like the Fanconi pathway.
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Background
DNA damaging agents such as nitrogen mustard [1,2],
formaldehyde [3], and cisplatin [4] generate many
lesions that inhibit proper DNA replication and tran-
scription. One such lesion, the interstrand crosslink
(ICL), covalently links two complementary DNA strands
and prevents their separation. Importantly, since both
strands are damaged, an undamaged template strand is
not available for repair. Due to these blocks and repair
challenges, ICLs are considered one of the most toxic
DNA lesions. It is estimated that the presence of just
one unrepaired ICL is sufficient to kill yeast or bacteria
[5] and approximately 40 unrepaired ICLs can kill mam-
malian cells [6]. As a result of this high cytotoxicity,
crosslinking agents are common anticancer agents [7].
Outside of chemotherapies, ICLs can be induced by
exposures in the environment [8] and byproducts of nor-
mal metabolic processes [9,10]. Thus, a clearer under-
standing of the mechanisms of ICL repair will inform
our knowledge of both normal and cancer cells. This
article and another recent review [11] describe novel
findings in yeast that provide insight into the mecha-
nisms of eukaryotic ICL repair.
A yeast fanconi-like pathway emerges
Cells have the capacity to repair ICLs through highly
complex DNA repair mechanisms. ICL repair in the
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prokaryotic system is relatively well defined. In Escheri-
chia coli, nucleotide excision repair (NER) creates inci-
sions on each side of the ICL. The resulting short
oligonucleotide is attached through the ICL, but is dis-
placed from the helix, revealing a gap. The gap is filled
in by homologous recombination (HR) or translesion
bypass synthesis (TLS), and the displaced oligonucleo-
tide/ICL adduct is removed by NER [12].
In lower eukaryotes, defects in most known DNA repair

pathways result in ICL sensitivity suggesting that
eukaryotic mechanisms are much more complex, involve
multiple repair pathways, and can occur in multiple
phases of the cell cycle. Several recent reviews address this
complexity in detail [13-23]. In the budding yeast Sacchar-
omyces cerevisiae, a G1-specific repair pathway involves
NER and TLS similar to the E. coli system [24]. Additio-
nally, three independent epistasis groups (PSO2, RAD52,
and RAD18) are implicated in ICL repair [25], but each
pathway mechanism is not fully defined. Pso2 is an exo-
nuclease that may be important for cleaving ICL repair
intermediates [26-30]. HR proteins, including Rad52 and
Rad51, likely fill in gaps post-incision and/or repair double
strand breaks (DSBs) that arise during ICL repair. The
post replication repair (PRR) pathway may help fill in the
gaps after the incision and unhooking of ICLs.
In higher eukaryotes the Fanconi anemia (FA) DNA

repair pathway has emerged as a master-regulator of
downstream checkpoints and pathways of ICL repair [13].
This pathway was named for patients with the heritable,
recessive disorder caused by mutations in FA repair genes.
These mutations confer developmental defects, cancer
ntral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:kmyung@mail.nih.gov
http://creativecommons.org/licenses/by/2.0


Figure 1 (See legend on next page.)
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Figure 1 Model for replication-associated interstrand crosslink repair in yeast. (A) Replication is stalled by an ICL, Rad5 polyubiquitylates
PCNA, and Mph1-mediated fork-reversal stabilizes the fork for repair (with Smc5/6 and Mhf1/2) and protects the repair intermediates from
collapsing into double strand breaks (DSBs). Downstream events of repair are mediated by Slx4 and Exo1. HR and TLS are important for gap-
filling steps. The figure key shows the putative human homologs in brackets. (B) The basic steps of ICL repair lead to various fragile intermediates
(ssDNA, single strand DNA) that can collapse into DSBs. Cell death is triggered if the DSB cannot be repaired.
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predisposition, and marked sensitivity to ICL-forming
agents [31]. In the FA repair pathway, FANCM and
FAAP24 are thought to recognize blocked forks, activate
checkpoint responses, and recruit the FA core complex
(FANC A, B, C, E, F, G, L, FAAP100) [32-34]. FANCM is
additionally stabilized by interactions with the MHF1/
MHF2 complex [35,36]. After recruitment, the FA core
complex ubiquitinates FANCD2 and FANCI [32,37].
These ubiquitinated proteins likely promote HR repair
and other poorly understood downstream repair events
mediated by FANCD1, FANCN, FANCP/SLX4, FANCO/
RAD51C and/or FANCJ [13].
Studies in lower eukaryotic model organisms, like yeasts,

have greatly improved our understanding of most DNA re-
pair pathways. The single-celled yeast model is genetically
tractable and provides a simplistic system for the study of
complex DNA repair problems. Until recently, a yeast FA-
like ICL repair pathway had not been functionally validated.
Mph1, Mhf1/Mhf2, Chl1, and Slx4 are putative homologs
to FANCM, MHF1/MHF2, FANCJ, and FANCP, respect-
ively [34-36,38-41]. Although previous work established
that the yeast proteins Mph1 [42-45], Mhf1/Mhf2 [35,36],
Chl1 [46-48], and Slx4 [49] all play an important role in
maintaining genomic integrity, a role in ICL repair (as indi-
cated by mutant sensitivity to ICL agents) was not appa-
rent. Recent publications from our group [50] and the
McHugh group [51] have demonstrated that these proteins
play a previously unappreciated role in ICL repair. Their
function is important for ICL survival when either the Pso2
exonuclease or the PRR helicase Srs2 pathways are inacti-
vated. These studies also revealed roles for additional
proteins in the yeast FA-like pathway including Mgm101,
MutSα (Msh2-Msh6), Exo1, proliferating cell nuclear anti-
gen (Pol30/PCNA), Smc5/6 and Rad5. These studies
provided key mechanistic insights that confirm, clarify, and
bolster our knowledge of the FA pathway, allowing us to
formulate the following model (Figure 1A):
ICL-induced replication stalling recruits or activates

Rad5, which polyubiquitylates PCNA. The helicase Mph1
is recruited to reverse and stabilize the fork. Although
their precise ICL-repair functions are unknown, Chl1,
Mhf1/Mhf2, Smc5/6, and Mgm101 likely help stabilize
Mph1 and/or the ICL repair intermediates. Slx4 may
coordinate incisions surrounding the ICL with its asso-
ciated endonucleases. Also in this pathway, the canonical
mismatch repair complex Msh2-Msh6 (MutSα) potentially
senses the aberrant DNA structure at the fork and/or
recruits Exo1 to digest the tethered ICL-containing oligo-
nucleotide. Oligonucleotide degradation produces a sub-
strate for downstream processing events such as gap-
filling by TLS polymerases or HR. Once the crosslinked
adduct is removed, the DNA replication fork can be
restored. Importantly, this reversed-fork pathway protects
the fragile intermediates of repair (Figure 1B), which can
collapse into double strand breaks and trigger cell death.
The foundational studies by our group and the

McHugh group have validated the yeast FA-like pathway
proteins [50,51]. Despite this, many questions remain
about the precise functions of each protein, particularly
Chl1, Smc5/6, and Mgm101. Chl1 and Smc5/6 have
been implicated in sister chromatid interactions [52-54],
so it is possible that these interactions create a stable
intermediate for engagement by HR. Mgm101 has been
implicated in mitochondrial recombination [55], so this
role may extend to the nuclear compartment as well. Fu-
ture genetic studies and the examination of ICL repair
intermediates in different mutant backgrounds will
hopefully shed light on these open questions.
In addition to the FA-like ICL repair pathway in yeast,

Pso2 and Srs2 participate in ICL repair. The Pso2 nucle-
ase functions after initial ICL recognition and incision,
which is likely mediated by NER factors [56]. Srs2 is a
helicase that directs the PRR pathway by preventing sub-
strate engagement by recombination proteins [57,58].
Since PRR is a damage tolerance it is not clear how the
ICL is excised through this pathway. It is entirely pos-
sible that, rather than forming independent pathways,
the Pso2- and Srs2-mediated pathways represent the
early (Pso2) and late (PRR) actions of a single pathway.
Conclusion
Mechanistically, these studies confirm the existence of a
yeast ICL repair pathway that is reminiscent of the
mammalian FA pathway. Like the mammalian system
[59], mismatch repair proteins contribute to the yeast
FA-like pathway. These studies also clarify the contro-
versial role of the PRR pathways [60-62] by demonstrat-
ing that, while the PRR proteins Srs2 and Rad18 are
distinct from the FA pathway, Rad5 and PCNA are
important mediators. Finally, in both yeast [50,51] and
mammalian pathways [35,63], Mph1/FANCM-mediated
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fork regression or stabilization likely protects ICL repair
intermediates from inappropriate processing or repair.
Despite the presence of a large core complex in the

mammalian FA repair pathway, the yeast pathway appears
to be substantially stripped down. It remains to be seen
whether a core-like complex will be identified in yeast or
whether evolutionary divergence was sparked by the need
for the large complex in mammals. Furthermore, since the
mammalian FA pathway appears to be a master regulator
of repair it is surprising that the yeast pathway is secon-
dary to Pso2- or Srs2-mediated events. Despite these dif-
ferences, the simplified yeast model offers significant
advantages for the FA repair field to address fundamental
mechanistic questions in the future.

Abbreviations
ICL: Interstrand crosslink; TLS: Translesion synthesis; NER: Nucleotide excision
repair; HR: Homologous recombination; PRR: Postreplication repair;
FA: Fanconi anemia; ssDNA: Single strand DNA; DSB: Double strand break.

Competing interests
The authors declare no competing interests with the contents of this
manuscript.

Authors’ contributions
The manuscript was prepared by D.L.D with editorial and substantive advice
from K.M. Both authors read and approved the final manuscript.

Acknowledgements
We thank members in Myung laboratory for helpful discussions and
comments on the manuscript; and K.M. especially thanks E. Cho. This
research was supported by the Intramural Research Programs of the National
Human Genome Research Institute to KM. We apologize to researchers
whose studies we could not discuss or cite due to space limitations.

Received: 21 August 2012 Accepted: 9 October 2012
Published: 12 October 2012

References
1. Geiduschek EP: “Reversible” DNA. Proc Natl Acad Sci USA 1961, 47:950–955.
2. Brookes P, Lawley PD: The reaction of mono- and di-functional alkylating

agents with nucleic acids. Biochem J 1961, 80:496–503.
3. Huang H, Hopkins PB: DNA Interstrand Cross-Linking by Formaldehyde:

Nucleotide Sequence Preference and Covalent Structure of the
Predominant Cross-link Formed in Synthetic Oligonucleotides. J Am
Chem Soc 1993, 115:9402–9408.

4. Roberts JJ, Friedlos F: The frequency of interstrand cross-links in DNA
following reaction of cis-diamminedichloroplatinum(II) with cells in
culture or DNA in vitro: stability of DNA cross-links and their repair.
Chem Biol Interact 1982, 39:181–189.

5. Magana-Schwencke N, Henriques JA, Chanet R, Moustacchi E: The fate of 8-
methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial
yeast DNA: comparison of wild-type and repair-deficient strains. Proc Natl
Acad Sci USA 1982, 79:1722–1726.

6. Lawley PD, Phillips DH: DNA adducts from chemotherapeutic agents.
Mutat Res 1996, 355:13–40.

7. McHugh PJ, Spanswick VJ, Hartley JA: Repair of DNA interstrand crosslinks:
molecular mechanisms and clinical relevance. Lancet Oncol 2001, 2:483–490.

8. Rahman A, Shahabuddin, Hadi SM: Formation of strand breaks and
interstrand cross-links in DNA by methylglyoxal. J Biochem Toxicol 1990,
5:161–166.

9. Summerfield FW, Tappel AL: Detection and measurement by high-
performance liquid chromatography of malondialdehyde crosslinks in
DNA. Anal Biochem 1984, 143:265–271.

10. Summerfield FW, Tappel AL: Cross-linking of DNA in liver and testes of
rats fed 1,3-propanediol. Chem Biol Interact 1984, 50:87–96.
11. McHugh PJ, Ward TA, Chovanec M: A prototypical Fanconi anemia
pathway in lower eukaryotes? Cell Cycle 2012, 11:3739–3744.

12. Lage C, de Padula M, de Alencar TA, da Fonseca Goncalves SR, da Silva
Vidal L, Cabral-Neto J, Leitao AC: New insights on how nucleotide excision
repair could remove DNA adducts induced by chemotherapeutic agents
and psoralens plus UV-A (PUVA) in Escherichia coli cells. Mutat Res 2003,
544:143–157.

13. Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM: DNA interstrand
crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol
Biol 2010, 45:23–49.

14. Mace-Aime G, Couve S, Khassenov B, Rosselli F, Saparbaev MK: The Fanconi
anemia pathway promotes DNA glycosylase-dependent excision of
interstrand DNA crosslinks. Environ Mol Mutagen 2010, 51:508–519.

15. McVey M: Strategies for DNA interstrand crosslink repair: insights from
worms, flies, frogs, and slime molds. Environ Mol Mutagen 2010,
51:646–658.

16. Vasquez KM: Targeting and processing of site-specific DNA interstrand
crosslinks. Environ Mol Mutagen 2010, 51:527–539.

17. Shen X, Li L: Mutagenic repair of DNA interstrand crosslinks. Environ Mol
Mutagen 2010, 51:493–499.

18. Wood RD: Mammalian nucleotide excision repair proteins and
interstrand crosslink repair. Environ Mol Mutagen 2010, 51:520–526.

19. Legerski RJ: Repair of DNA interstrand cross-links during S phase of the
mammalian cell cycle. Environ Mol Mutagen 2010, 51:540–551.

20. Ho TV, Scharer OD: Translesion DNA synthesis polymerases in DNA
interstrand crosslink repair. Environ Mol Mutagen 2010, 51:552–566.

21. Rahn JJ, Adair GM, Nairn RS: Multiple roles of ERCC1-XPF in mammalian
interstrand crosslink repair. Environ Mol Mutagen 2010, 51:567–581.

22. Hinz JM: Role of homologous recombination in DNA interstrand crosslink
repair. Environ Mol Mutagen 2010, 51:582–603.

23. Hlavin EM, Smeaton MB, Miller PS: Initiation of DNA interstrand cross-link
repair in mammalian cells. Environ Mol Mutagen 2010, 51:604–624.

24. Sarkar S, Davies AA, Ulrich HD, McHugh PJ: DNA interstrand crosslink
repair during G1 involves nucleotide excision repair and DNA
polymerase zeta. EMBO J 2006, 25:1285–1294.

25. Grossmann KF, Ward AM, Matkovic ME, Folias AE, Moses RE: S. cerevisiae
has three pathways for DNA interstrand crosslink repair. Mutat Res 2001,
487:73–83.

26. Callebaut I, Moshous D, Mornon JP, de Villartay JP: Metallo-beta-lactamase
fold within nucleic acids processing enzymes: the beta-CASP family.
Nucleic Acids Res 2002, 30:3592–3601.

27. De Silva IU, McHugh PJ, Clingen PH, Hartley JA: Defining the roles of
nucleotide excision repair and recombination in the repair of DNA
interstrand cross-links in mammalian cells. Mol Cell Biol 2000, 20:7980–7990.

28. Ma Y, Pannicke U, Schwarz K, Lieber MR: Hairpin opening and overhang
processing by an Artemis/DNA-dependent protein kinase complex in
nonhomologous end joining and V(D)J recombination. Cell 2002,
108:781–794.

29. McHugh PJ, Sones WR, Hartley JA: Repair of intermediate structures
produced at DNA interstrand cross-links in Saccharomyces cerevisiae.
Mol Cell Biol 2000, 20:3425–3433.

30. Wilborn F, Brendel M: Formation and stability of interstrand cross-links
induced by cis- and trans-diamminedichloroplatinum (II) in the DNA of
Saccharomyces cerevisiae strains differing in repair capacity. Curr Genet
1989, 16:331–338.

31. Auerbach AD: Fanconi anemia and its diagnosis. Mutat Res 2009,
668:4–10.

32. Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q, van de Vrugt
HJ, Oostra AB, Yan Z, Ling C, Bishop CE, et al: A novel ubiquitin ligase is
deficient in Fanconi anemia. Nat Genet 2003, 35:165–170.

33. Meetei AR, Levitus M, Xue Y, Medhurst AL, Zwaan M, Ling C, Rooimans MA,
Bier P, Hoatlin M, Pals G, et al: X-linked inheritance of Fanconi anemia
complementation group B. Nat Genet 2004, 36:1219–1224.

34. Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, Bier P, Steltenpool J,
Stone S, Dokal I, Mathew CG, et al: A human ortholog of archaeal DNA
repair protein Hef is defective in Fanconi anemia complementation
group M. Nat Genet 2005, 37:958–963.

35. Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra
AB, Du H, Steltenpool J, et al: A histone-fold complex and FANCM form a
conserved DNA-remodeling complex to maintain genome stability. Mol
Cell 2010, 37:865–878.



Daee and Myung Genome Integrity 2012, 3:7 Page 5 of 5
http://www.genomeintegrity.com/content/3/1/7
36. Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A,
Wahengbam K, Pierce AJ, Xiong Y, et al: MHF1-MHF2, a histone-fold-
containing protein complex, participates in the Fanconi anemia pathway
via FANCM. Mol Cell 2010, 37:879–886.

37. Sims AE, Spiteri E, Sims RJ 3rd, Arita AG, Lach FP, Landers T, Wurm M,
Freund M, Neveling K, Hanenberg H, et al: FANCI is a second
monoubiquitinated member of the Fanconi anemia pathway. Nat Struct
Mol Biol 2007, 14:564–567.

38. Gerring SL, Spencer F, Hieter P: The CHL 1 (CTF 1) gene product of
Saccharomyces cerevisiae is important for chromosome transmission
and normal cell cycle progression in G2/M. EMBO J 1990, 9:4347–4358.

39. Wu Y, Suhasini AN, Brosh RM Jr: Welcome the family of FANCJ-like
helicases to the block of genome stability maintenance proteins. Cell Mol
Life Sci 2009, 66:1209–1222.

40. Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA,
Steltenpool J, Oostra AB, Eirich K, Korthof ET, Nieuwint AW, et al: SLX4, a
coordinator of structure-specific endonucleases, is mutated in a new
Fanconi anemia subtype. Nat Genet 2011, 43:138–141.

41. Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A:
Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 2011, 43:142–146.

42. Prakash R, Satory D, Dray E, Papusha A, Scheller J, Kramer W, Krejci L, Klein
H, Haber JE, Sung P, Ira G: Yeast Mph1 helicase dissociates Rad51-made
D-loops: implications for crossover control in mitotic recombination.
Genes Dev 2009, 23:67–79.

43. Entian KD, Schuster T, Hegemann JH, Becher D, Feldmann H, Guldener U,
Gotz R, Hansen M, Hollenberg CP, Jansen G, et al: Functional analysis of
150 deletion mutants in Saccharomyces cerevisiae by a systematic
approach. Mol Gen Genet 1999, 262:683–702.

44. Schurer KA, Rudolph C, Ulrich HD, Kramer W: Yeast MPH1 gene functions
in an error-free DNA damage bypass pathway that requires genes from
Homologous recombination, but not from postreplicative repair. Genetics
2004, 166:1673–1686.

45. Prakash R, Krejci L, Van Komen S, Anke Schurer K, Kramer W, Sung P:
Saccharomyces cerevisiae MPH1 gene, required for homologous
recombination-mediated mutation avoidance, encodes a 30 to 50 DNA
helicase. J Biol Chem 2005, 280:7854–7860.

46. Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM,
Noguchi E: RFCCtf18 and the Swi1-Swi3 complex function in separate
and redundant pathways required for the stabilization of replication
forks to facilitate sister chromatid cohesion in Schizosaccharomyces
pombe. Mol Biol Cell 2008, 19:595–607.

47. Laha S, Das SP, Hajra S, Sau S, Sinha P: The budding yeast protein Chl1p is
required to preserve genome integrity upon DNA damage in S-phase.
Nucleic Acids Res 2006, 34:5880–5891.

48. Ogiwara H, Ui A, Lai MS, Enomoto T, Seki M: Chl1 and Ctf4 are required for
damage-induced recombinations. Biochem Biophys Res Commun 2007,
354:222–226.

49. Fricke WM, Brill SJ: Slx1-Slx4 is a second structure-specific endonuclease
functionally redundant with Sgs1-Top3. Genes Dev 2003, 17:1768–1778.

50. Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung
K: Rad5-dependent DNA repair functions of the Saccharomyces
cerevisiae FANCM homolog Mph1. J Biol Chem 2012, 287:26563–26575.

51. Ward T, Dudášová Z, Sarkar S, Bhide M, Vlasáková D, Chovanec M, McHugh
PJ: Components of a Fanconi-like pathway control Pso2-independent
DNA interstrand crosslink repair in yeast. PLoS Genet 2012,: . in press.

52. Chen YH, Choi K, Szakal B, Arenz J, Duan X, Ye H, Branzei D, Zhao X:
Interplay between the Smc5/6 complex and the Mph1 helicase in
recombinational repair. Proc Natl Acad Sci USA 2009, 106:21252–21257.

53. Fujioka Y, Kimata Y, Nomaguchi K, Watanabe K, Kohno K: Identification of a
novel non-structural maintenance of chromosomes (SMC) component of
the SMC5-SMC6 complex involved in DNA repair. J Biol Chem 2002,
277:21585–21591.

54. Skibbens RV: Chl1p, a DNA helicase-like protein in budding yeast,
functions in sister-chromatid cohesion. Genetics 2004, 166:33–42.

55. Mbantenkhu M, Wang X, Nardozzi JD, Wilkens S, Hoffman E, Patel A,
Cosgrove MS, Chen XJ: Mgm101 is a Rad52-related protein required for
mitochondrial DNA recombination. J Biol Chem 2011, 286:42360–42370.

56. Lehoczky P, McHugh PJ, Chovanec M: DNA interstrand cross-link repair in
Saccharomyces cerevisiae. FEMS Microbiol Rev 2007, 31:109–133.
57. Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T,
Sung P: DNA helicase Srs2 disrupts the Rad51 presynaptic filament.
Nature 2003, 423:305–309.

58. Friedl AA, Liefshitz B, Steinlauf R, Kupiec M: Deletion of the SRS2 gene
suppresses elevated recombination and DNA damage sensitivity in rad5
and rad18 mutants of Saccharomyces cerevisiae. Mutat Res 2001,
486:137–146.

59. Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A, Ananth S,
Glazer PM, Semmes OJ, Bale AE, Jones NJ, Kupfer GM: Functional and
physical interaction between the mismatch repair and FA-BRCA
pathways. Hum Mol Genet 2011, 20:4395–4410.

60. Sala-Trepat M, Boyse J, Richard P, Papadopoulo D, Moustacchi E:
Frequencies of HPRT- lymphocytes and glycophorin A variants
erythrocytes in Fanconi anemia patients, their parents and control
donors. Mutat Res 1993, 289:115–126.

61. Evdokimova VN, McLoughlin RK, Wenger SL, Grant SG: Use of the
glycophorin A somatic mutation assay for rapid, unambiguous
identification of Fanconi anemia homozygotes regardless of GPA
genotype. Am J Med Genet A 2005, 135:59–65.

62. Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ: The
Fanconi anaemia gene FANCC promotes homologous recombination
and error-prone DNA repair. Mol Cell 2004, 15:607–620.

63. Blackford AN, Schwab RA, Nieminuszczy J, Deans AJ, West SC, Niedzwiedz
W: The DNA translocase activity of FANCM protects stalled replication
forks. Hum Mol Genet 2012, 21:2005–2016.

doi:10.1186/2041-9414-3-7
Cite this article as: Daee and Myung: Fanconi-like crosslink repair in
yeast. Genome Integrity 2012 3:7.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	A yeast fanconi-like pathway emerges

	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

