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Abstract

Cellular senescence is a normal biological process that is initiated in response to a range of intrinsic and extrinsic
factors that functions to remove irreparable damage and therefore potentially harmful cells, from the proliferative
pool. Senescence can therefore be thought of in beneficial terms as a tumour suppressor. In contrast to this, there
is a growing body of evidence suggesting that senescence is also associated with the disruption of the tissue
microenvironment and development of a pro-oncogenic environment, principally via the secretion of senescence-
associated pro-inflammatory factors. The fraction of cells in a senescent state is known to increase with cellular age
and from exposure to various stressors including ionising radiation therefore, the implications of the detrimental
effects of the senescent phenotype are important to understand within the context of the increasing human
exposure to ionising radiation. This review will discuss what is currently understood about senescence, highlighting
possible associations between senescence and cancer and, how exposure to ionising radiation may modify this.
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Cellular Senescence
Cellular senescence is a metabolically active form of
irreversible growth arrest that halts the proliferation of
ageing and/or damaged cells and as a consequence, pre-
vents the transmission of damage to daughter cells. This
complicated cellular event is initiated in response to a
variety of intrinsic and extrinsic genotoxic stimuli [1-4]
and mediated through tumour suppressor pathways
involving p53, and p16INK4A/pRb [5,6]. This ultimately
leads to the inhibition of cyclin-dependant kinases [7,8].
Accordingly, cellular senescence can be thought of as a
tumour suppressor mechanism. Indeed the majority of
cancers have mutations in p53 and/or the pRb/p16
pathways, while germ-line mutations in these pathways
result in a cell-specific ability to overcome senescence-
inducing signals, thereby greatly increasing their sus-
ceptibility to cellular transformation [9-11]. The impor-
tance of cellular senescence as a tumour suppressor is
further demonstrated by cell fusion experiments [12]
that provide evidence that growth arrest observed in
senescent cells has a strong influence over the growth in

proliferating cells and cellular oncogenes of tumour
cells. When proliferating cells were fused with senescent
cells, DNA replication was inhibited even in the pre-
sence of mitogens, and when senescent cells were fused
with tumour cells, DNA replication was similarly inhib-
ited. These fusion experiments led to the assumption
that senescent cells contained control elements capable
of exerting a dominant effect over proliferating pre-
senescent cells. Importantly, this tumour suppressive
mechanism of cellular senescence has been supported in
both mice and human studies [13].
As well as possessing tumour suppressive mechanisms,

senescence has been found to play an important role in
wound healing and tissue repair and/or communication
to surrounding tissues/cells of damage crisis to assist
healing [14,15]. For instance, senescent cells have been
shown in in vivo mouse models to play a role in the
resolution of fibrosis by matrix metalloproteinases
(MMPs) after acute liver injury. Under normal condi-
tions, proliferating hepatic stellate cells triggered in
response to acute liver injury, produce fibrotic scars in
advance of entering into a senescent state, followed by
secretion of MMPs and scar dissolution. However in
cells deficient in either p53/pRb pathways, liver injury
results in severe, irresolvable fibrosis [16]. Similarly, the
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matricellular protein CCN1, which is expressed at sites
of cutaneous wound repair, has been shown to initiate
DNA damage response pathways and reactive-oxygen
species dependent activation of p16INK4A/pRb pathway,
resulting in senescence and the expression of anti-fibro-
tic genes in wild-type mice. Mutant mice that express a
senescence-defective CCN1 protein however show
increased fibrosis at sites of wound repair [17]. Cellular
senescence has been also shown to be important in the
prevention of epithelial-mesenchymal transition (EMT)
whereby the metastatic dissemination of cancerous cells
is prevented [18,19]. Thus, the functional significance of
cellular senescence includes a diverse range of roles
which are essentially beneficial to the organism.

Phenotype
The major phenotype of senescence that characteristi-
cally distinguishes senescence from quiescence is irre-
versible growth arrest that cannot be reversed by any
known physiological stimuli, associated with resistance
to apoptosis and increased sensitivity to cellular injury
[20-26]. Other characteristic changes include altered
gene expression with increased expression of proteins
including p53, p16, p19 and p21 [27,28], an increase in
senescence-associated beta galactosidase (SA-b-gal)
activity at pH 6.0 [29], the presence of persistent telo-
mere and non-telomere DNA damage foci [30,31],
senescence-associated heterochromatic foci (SAHF) [6]
and a senescence-associated secretory phenotype (SASP)
[32,33]. Accordingly, identification of senescent cells can
be achieved by assaying for a combination of the above
characteristics. The application of proliferation cell-cycle
specific markers, such as Ki-67, can also be used
[34-36]. For example Kill et al (1996) showed that 56%
of human dermal fibroblasts were Ki-67 positive at early
passage 4 [37] compared to only 30% at passage 38 [38]
with the decrease in fraction of Ki-67 positive cells
reflecting an increase in senescence.
A range of morphological changes have also been

documented with senescent fibroblasts showing enlarged
and flattened morphology accompanied by the loss of
elongated, spindle-like properties, when compared to
normal proliferating fibroblasts. Specifically, the mean
nuclear area of fibroblasts was shown to be 255 μm2 at
early passage, compared to 293 μm2 at later passage
[39]. Interestingly, the sub-nuclear organisation of chro-
mosomes has also been shown to be different in senes-
cent and proliferating mammalian somatic cells,
whereby gene poor chromosomes such as chromosomes
13 and 18 are thought to alter their preferential nuclear
position from near the nuclear periphery and relocate to
the nuclear interior when induced to senesce. Thus, the
interphase organisation of particular chromosome terri-
tories changes such that their position correlates

according to the size of the chromosome, rather than
the density [40,41].

Replicative Senescence
Seminal work carried out by Hayflick and Moorhead
(1961) demonstrated that normal cells grown in culture
dishes are only able to undergo a finite number of cellu-
lar divisions before their growth is irreversibly arrested
[42-44]. This ‘Hayflick Limit’ was the first demonstra-
tion of a senescence phenotype and described the repli-
cative capacity of diploid cells in culture before the cells
ceased to divide [45] and has since been demonstrated
for many different types of cells both in vitro and in
vivo [46,47]. Importantly, diploid cells within cell popu-
lations do not all reach senescence at the same time,
rather there is a progressive decrease in the fraction of
proliferating cells that are capable of undergoing cellular
division with each round of replication [48,49]. Also, dif-
ferent cell types and lineages will vary in the rate at
which they enter a senescent state [50]. For example, in
vitro studies comparing the growth rates and passage
number of fibroblast and keratinocyte cell types
observed that the decline in cell growth rate was notably
higher for keratinocytes which had senesced by P6,
compared to fibroblasts that were passaged beyond P10
in all donor age groups above and below 40 years of
age; suggesting that the growth rate of the two cell
types is independent of donor age [51]. Indeed a ‘mem-
ory’ for the number of completed population doublings
was observed when WI-38 fibroblasts were found to
enter senescence with respect to their remaining replica-
tive capacity, even after cryopreservation for a period of
23 years [44].
The mechanism for replicative senescence is believed

to be associated with a progressive shortening of telo-
meres that occurs with each DNA replication cycle
[52,53]. Functional telomeres protect the ends of chro-
mosomes however, approximately 100-300 bp of these
repeat sequences are lost as a result of incomplete repli-
cation of the extending 3’ overhang of nucleotides
[54,55]. Support for this comes from studies that show
critically short telomeres trigger a DNA damage
response which results in cellular senescence [30,56],
while immortal cancer and germ cell lines overcome the
action of telomeric shortening by the expression of the
telomerase enzyme [57]. Telomerase synthesizes and
maintains telomeric end sequences, preventing the expo-
sure of uncapped ends [58] thereby permitting contin-
ued cellular proliferation [59-63].

Stress-induced Premature Senescence (SIPS)
Stress-induced premature senescence (SIPS), also known
as premature senescence, culture shock and STASIS
(stress or aberrant signalling-induced senescence)
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[64-66], occurs rapidly in response to a variety of intrin-
sic or extrinsic stressors, including DNA damage from
ionising and non-ionising radiation, cytotoxic DNA
damaging agents, oxidative stress and as a consequence
of oncogenic activation [3,4,8,67]. Serrano et al (1997)
were among the first to identify a form of SIPS that was
not attributable to telomere attrition that they described
as oncogene-induced senescence (OIS). The group
showed that oncogenic ras expression permanently
arrested primary human and rodent cells in G1 and that
the cells displayed features similar to those of replicative
senescence, including the accumulation of p53 and p16
[65]. Importantly the expression of the catalytic subunit
of the telomerase enzyme hTERT has been shown not
to abrogate SIPS, demonstrating that cellular senescence
can be triggered prematurely independently of telomere
attrition [68,69]. Thus, oncogenic activation and stres-
sors that lead to DNA damage but which are indepen-
dent of loss or dysfunction of telomeres, can initiate a
response that results in a cellular phenotype indistinct
to that observed for replicative senescence [63,70].

Molecular Pathways of Senescence
The initiating event for both replicative senescence and
SIPS involves the recognition of DNA damage and the
activation of the DNA damage response (DDR) pathway
[3,56,71-74]. The key mediator in this process, ATM,
phosphorylates important sensors and effectors of the
DDR including H2AX, 53BP1 [31,75-77] and p53 lead-
ing to the up-regulation of cyclin-dependant kinase inhi-
bitor p21, which in-turn acts to inhibit the action of
CDK2 kinase activity arresting the cell cycle in G1 [76]
(Figure 1). In addition, p21 also activates pRb through
the inhibition of cyclin E/CDK2 [1]. Where SIPS differs
from replicative senescence is in the formers depen-
dence on the P16INK4 family of tumour suppressor
proteins, which are activated upstream to pRb [10,78].
Accordingly, increased P16INK4A expression is consid-
ered as another useful marker of senescence in vitro,
and indeed elevated protein levels have been detected in
ageing baboon fibroblasts along with markers of telo-
mere damage and SAHF [79]. The hypophosphorylated
state of pRb results in inhibition of the transcription fac-
tor gene E2F and this acts to bring about G1 cell cycle
arrest. For this reason, the p53 and p16/pRB dependent
senescent pathways are not completely separable and as
well as the common link through p21, pRB has been
shown to regulate the activity of MDM2 which acts to
control the stability of p53 [80]. Thus increased expres-
sion of p21 is important for senescence [81]. Conse-
quently, the DNA damage response, apoptotic and
senescence pathways share common molecular media-
tors through p53 and p21. What directs a cell to senesce
or apoptose remains unclear, but cell type, the type of

damaging agent and the dose administered may be
important; as well as the post-translational modifications
that p53 undergoes [82]. For instance in normal cells,
senescence has been shown to be more favourable than
apoptosis to deal with low levels of DNA damage, per-
haps as the cell makes the decision to attempt to repair
instead of removal from the cell pool [3,76,83]. By con-
trast, adult human dental pulp stem cells (DPSCs) were
found to enter premature senescence in the G2 phase of
the cell cycle after exposure to much higher doses (2-20
Gy) of ionising radiation, as detectable by phosphory-
lated p53 and increasing p16 expression observed over
13 days and SA-b-gal activity from day 3 after irradia-
tion [84]. Possible mechanisms that may be involved in
determining cellular fate include the status of the
tumour suppressor phosphate and tensin homolog
(PTEN). For instance, Lee J, et al (2010) showed that
PTEN-deficient glioma cells preferentially entered senes-
cence, while PTEN-proficient glioma cells generally
apoptosed in response to ionising radiation. The authors

 REPLICATIVE SENESCENCE 
        (short telomeres) 

GENOTOXIC AGENTS 
i.e Ionising Radiation 
ONCOGENIC STRESS 

DYSFUNCTIONAL TELOMERES 
OXIDATIVE STRESS 

OTHERS 

STRESS 

 DDR 

 ATM/ATR P16INK4

 P21   Rb 

SENESCENCE 

  P53 

CELL CYCLE ARREST 
    SA- -GAL 
   P16INK4a 
   ALTERED MORPHOLOGY 
   SAHF 
 CHROMATIN MODIFICATIONS 
   SASP 

CDCK2 E2F 

PATHOLOGY in vivo CANCER (hyperplastic, 
preneoplastic and 
neoplastic lesions) 

DIABETES 

LOW GRADE INFLAMMATION 

OBESITY 

NEURODEGENERATION 

NORMAL AGEING 

SITES OF TISSUE 
DAMAGE 

Figure 1 Scheme highlighting initiating and molecular
mediators of cellular senescence. The senescent phenotype
includes expression of SA-b-galactosidase (SA-b-gal), increased
expression of p16INK4a leading to cell cycle arrest and an increase
in the secretion of pro-inflammatory factors termed as senescence-
associated secretory phenotype (SASP). Senescent cells have been
observed in normal ageing cells and in cells/tissues of various age-
related pathologies.
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concluded that SIPS may be a compensatory mechanism
in place of apoptosis when PTEN tumour suppressor
protein is absent [85].
What is clear is that the convergence of multiple path-

ways through p53 and pRb are required to establish and
maintain the senescent state and removal of either of
these has been shown to prevent senescence in mouse
embryonic fibroblasts [86]. In humans, it is thought that
both p53 and pRb pathways must be inactivated in
order to prevent the onset of cellular senescence [87],
consistent with the majority if findings that show ~50%
of all tumours show evidence of mutated/non-functional
p53 and/or pRb [88,89]. Interestingly though, more
recent experiments in humans and mice have shown
that senescence can be prevented, or significantly
delayed as a result of inactivation of either p53 or Rb
alone while some cell types exhibit delayed onset of
senescence upon p16 inactivation [90]. Therefore the
relationship between these two pathways and the poten-
tial for redundancy in either pathway may provide
further protection against senescence bypass in different
cell types [3,91].

Senescence and Cancer
Senescence, in addition and in contrast to the previously
noted beneficial tumour suppression and tissue repair
effects, has also been linked to reduced tissue function-
ality and is increasingly thought to play a role in age-
related pathologies such as cancer, Alzheimer’s disease,
diabetes and obesity [54,92-96]. For instance, senescent
cells have been observed in many ageing mice tissues
[20,97], baboon skin fibroblasts [79] and human tissues
[29] indicating that senescence may have a causal role
in ageing in vivo as well as in vitro. Senescent endothe-
lial cells have been shown to increase in atherosclerosis,
thrombosis and at sites of inflamed vascular endothe-
lium [18,98], demonstrating possible links with pathol-
ogy. Therefore, the accumulation of senescent
haemopoietic stem cells has been suggested as a possible
mediator for the decline in tissue regeneration and
repair with age.
Markers of DNA damage are known to accumulate in

ageing stem cells [64,99-101] and other senescing
human and mouse cell types [102-104]. For instance,
studies employing the DSB marker, g-H2AX, reveal g-
H2AX foci to accumulate in normal human fibroblasts,
WI38 fibroblasts and PrEC prostate epithelial cells with
increasing passage in a manner that correlates with an
increasing fraction of SA-b gal positive cells. Specifically,
early passage cultures show 0.2-0.3 g-H2AX foci/cell
increasing to 2.2-4.1 foci/cell in senescent cultures [31].
Further to this, radiation-induced g-H2AX foci have
both been shown to increase in both murine and
human senescent cells in vitro [56,73,74] while, in vivo

studies have shown the long-term expression of senes-
cence markers, including an increased expression of
p16INK4a to be coupled with the persistence of DNA
damage foci 45 weeks post irradiation to a sub-lethal
dose of radiation [105]. Interestingly, g-H2AX foci
(along with other DNA damage markers such as 53BP1)
have been shown to localise both at telomeres as telo-
mere-dysfunction-induced-foci (TIFs) in both early and
late passage fibroblasts [106] and also throughout the
genome as a consequence of ionising radiation exposure.
Therefore g-H2AX foci seen in senescent cells are not
necessarily telomere-associated foci, representative of
replicative senescence, but may represent SIPS-induced
sites of DSB, highlighting that mediators of SIPS may
contribute to age-related pathologies, including cancer.
Accordingly, there is a relationship between cellular age-
ing and the accumulation of residual DNA damage both
in vitro and in vivo, however as yet there is no evidence
to determine whether senescence is a resultant part of
ageing and age-related pathologies or whether it is a
state that contributes to the development of ageing tis-
sues and tissue pathology. Interestingly though, mouse
models of accelerated ageing that are deficient for
p16INK4a show delayed onset of age-related pheno-
types, highlighting the role of increasing p16INK4a in
maintaining the senescent state and its role in age-
related decline of tissue regeneration and repair [107].
Further studies will hopefully decipher the evidential
link between increasing populations of senescent cells
and the contribution they have in the development of
age-related pathologies such as cancer [108,109].

Senescence-Associated Secretory Phenotype (SASP)
It is well established that senescent cells secrete factors
such as interleukins, chemokines, growth factors and
proteases, encompassing what is known as the senes-
cence-associated secretory phenotype (SASP)
[15,32,110]. The function of SASP is to mediate the
characteristic growth arrest of senescence via the auto-
crine activities of pro-inflammatory cytokines (including
IL-6 and IL-8), in addition to pro-apoptotic protein
insulin growth-factor binding protein 7 (IGFBP7),
epithelial growth factors (heregulin and VEGF), matrix
metalloproteinases including MMP-3 and plasminogen
activator inhibitor 1 (PAI-1) [111-113]. Interestingly the
name ‘senescence-messaging secretome’ (SMS) was pro-
posed to highlight that the associated factors of the
secretory phenotype were not only essential for initiating
the senescent state but also for its maintenance and
communication of this state to the local microenviron-
ment [114,115]. A study that highlights this communica-
tion shows that re-activation of endogenous p53 in p53-
deficient tumours in a mosaic mouse model of hepato-
cellular carcinoma led to tumour regression. This was
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proposed to occur through the induction of cellular
senescence and up-regulation of inflammatory cytokines,
triggering an innate immune response in vivo that ulti-
mately led to tumour clearance [116]. Thus, inflamma-
tory cytokines are necessary for both the establishment
and maintenance of senescence, suggesting SASP/SMS
products are important for the suppression of malig-
nancy [111,114]. However, SASP is also known to influ-
ence the proliferation of neighbouring cells and disrupt
tissue architecture [117], principally through these pro-
inflammatory influences. For instance, an increase in
VEGF, as a result of senescent fibroblasts, has been seen
to stimulate tumour vascularisation and invasion of
basement membranes [118]. Further, inflammation is
thought of as a key mediator in cancer development and
inflammatory cytokines and MMPs are being increas-
ingly implicated as a contributing factor in this multi-
step process.
What this suggests is that senescent cells can actually

promote, in addition to preventing, the progression of
malignancy; a relationship that is described as antago-
nistically pleiotrophic [21,118-121]. For instance, senes-
cent human fibroblasts have been shown to stimulate
pre-malignant and malignant fibroblasts to hyperprolife-
rate and form tumours in mouse models when senes-
cent cells comprised ~10% of the fibroblast population
[122]. Close proximity of senescent fibroblasts to pre-
neoplastic cells are thought to be the trigger for this
change. Additionally, after exposure to the DNA-dama-
ging agent bleomycin, human SIPS fibroblasts co-trans-
planted into xenografts of immunodeficient mice were
seen to stimulate nearby cancer cells to proliferate,
either directly or through local tissue damage and
inflammation mediated by MMPs [123]. These findings
support SASP as being an important mediator of the
transformation process of pre-neoplatic cells. In addi-
tion, studies carried out by Zhou et al (2011) have
shown SIPS in normal airway epithelial cells to result in
an impairment of repair of drug-induced damage initiat-
ing a p38 MAPK dependant increase of pro-inflamma-
tory cytokines that was subsequently seen to exacerbate
the airway injury [124]. Interestingly this cytokine secre-
tion, which primarily involves IL-6 and IL-8, is only
established as a result of persistent DNA damage
response signalling (DDR) and not as a result of transi-
ent signalling [125] suggesting the presence of long-
lived, irreparable DNA lesions are important in this
process.
Thus alteration of the tissue microenvironment that

results in the promotion of cell growth as a conse-
quence of the senescence phenotype, through inflamma-
tion and persistent tissue damage [4,15,126] may
provide a mechanism whereby senescent cells may also
contribute to cancer promoting effects in otherwise

normal tissues [127]. If demonstrated then senescence
may functionally protect young animals from cancer via
tumour suppression, whilst contributing to the deleter-
ious effects in aged organisms through persistent inflam-
mation and tissue injury [122,126].

Ionising radiation and Senescence
Ionising radiation is known to induce SIPS in both nor-
mal and cancer cell types after exposure to relatively
high doses (10Gy) of radiation [125,128-131]. Thus, an
important implication is what contribution, if any,
senescence plays as a possible mediator of tumour
recurrence after radiotherapy, given the effects of SASP
in stimulating pre-neoplastic cells as discussed earlier.
SIPS is also induced after exposure to lower doses of
radiation [125,130,132,133] which similarly has conse-
quences for understanding human cancer risk to radia-
tion exposure, but this time within the context of SIPS
in normal tissue after e.g. diagnostic exposures. For
instance it is well established that radiation induces
damage in cells that are not directly irradiated but
which are in communication with irradiated cells. This
radiation-induced non-targeted bystander (NTE) phe-
nomenon is known to dominate at low radiation doses
and to mediate a range of cellular effects such as DNA
damage [134,135], cell death [136], cell proliferation,
adaptive protective effects and malignant transformation
[75,137-141]. To date, such NTE have been observed in
microbeam-irradiated human tissue [141,142], in vivo
animal models [143-145] and interestingly, in cells cul-
tured in both non-irradiated tumour and senescent cell
conditioned medium [14,75].
Thus, it is reasonable to ask if there is a possible con-

cordance between radiation-induced SIPS and SASP,
and candidate mediators of NTE effects. Reactive oxygen
species (ROS) are known to be important damaging
agents involved in NTE [143,146,147], but additionally,
activated macrophage, NO, IL-6, IL-8, IFN-g and TGF-b
have all also been implicated [143,144,148]. For instance,
one study used radiation-induced AML susceptible and
resistant mouse strains, CBA/ca and C57BL/6 respec-
tively, to correlate radiation-induced up-regulation of
gene expression of a M1 pro-inflamatory macrophage
profile with more NTE in CBA/ca and an M2 anti-
inflammatory macrophage profile, with less NTE in
C57BL/6 strains [144]. Thus, candidate sources for the
mediation of radiation-induced NTE include inflamma-
tion-associated cytokines and chemokines secreted from
irradiated (or otherwise stressed) cells. Whether the irra-
diated cells that contribute to this plethora of inflamma-
tory signals remain within the proliferative pool upon
repair of damage or whether they become senescent is
unknown however it is clear that even low doses of
radiation induce SIPS and these cells subsequently
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secrete inflammatory cytokines, including IL-6 and IL-8
[27,110,133,149-153]. Interestingly Tsai et al (2009)
showed that stromal fibroblasts that were induced to
senesce after low dose radiation exposure stimulated the
proliferation of breast-carcinoma cells when co-cultured
in the same medium [125,130,132,133].
This potential relationship between exposure to radia-

tion, cellular age and deleterious inflammatory (NTE)
responses is further demonstrated by human and animal
studies which show a correlation exists between the
immunological imbalances caused as a result of exposure
to radiation and, those effects which are seen in normal
aged immune cells, implying ionising radiation may
accelerate immunological ageing [154]. For instance, the
normal age-related decrease of total CD4+ T-cells was
found to be ~4% per 10 years, compared to a radiation-
induced decrease of ~2% Gy-1, equivalent to a 5 year age
increase per 1 Gy [155,156]. This group also demon-
strated a dose-dependent increase in CD25+/CD127- reg-
ulatory T-cells and attributed T-cell immunosenescence
to a higher level of inflammatory markers in A-bomb
survivors. For instance, changes in the immunological
profiles of cytokines, known to be involved in the coordi-
nation of the inflammatory response (TNF-a, IFN-g, IL-6
and IL-10) were seen in both A-bomb survivors and
liquidators which may contribute to the persistent subcli-
nical inflammatory status that is seen in these individuals
[157-160]. There is the suggestion therefore that radia-
tion-induced enhancement of inflammatory reactions
might contribute to the development of radiation-
induced disorders and premature ageing [155,161].
Indeed, it is also well known that A-bomb survivors show
increased cardiovascular and respiratory diseases asso-
ciated with persistent inflammation [162,163].
Taken all together it is tempting to speculate radia-

tion-induced SIPS and SASP as important mediators
and, or amplifiers of radiation-induced NTE, which in
turn may perpetuate inflammatory signals that subse-
quently, also contribute to increasing SIPS. In elucidat-
ing the importance of any such relationship in
contributing to cancer risk, particularly at low doses,
future work needs to understand the relevance of radia-
tion quality, dose and dose rate in initiating SIPS and
the long term tissue damage and pathological alterations
that may arise as a consequence.

Conclusion
The beneficial tumour suppressive role of senescence
whereby damage is prevented from being transmitted to
daughter cells is well established. What is only recently
becoming apparent is that pro-inflammatory factors
such as those encompassing the senescence-associated
secretory phenotype (SASP) are linked to cellular prolif-
eration, a persistent low grade inflammation, elevated

DNA damage foci and transformation of pre-neoplastic
cells. Human populations are increasingly being exposed
to ionising radiation from a range of diagnostic, treat-
ment and occupational sources highlighting the poten-
tial risks of SASP whereby stress-induced premature
senescence (SIPS) is initiated instead of apoptosis. The
potential effects of this are two-fold; accelerated cellular
ageing and an amplification of any detrimental effects
produced by SASP. Thus, further research is required to
understand the relationship between exposures to radia-
tion, SIPS and how, in turn, SIPS may modify the biolo-
gical effect of radiation exposure.
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