Vaupel P, Harrison L: Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist. 2004, 9 (Suppl 5): 4-9.
Article
PubMed
Google Scholar
Hill RP, Bristow RG: The Scientific Basis of Radiotherapy. The Basic Science of Oncology. Edited by: Tannock IF, Hill RP, Bristow RG, Harrington L. 2005, New York: McGraw-Hill Ltd, 289-321.
Google Scholar
Chan N, Koch CJ, Bristow RG: Tumor hypoxia as a modifier of DNA strand break and cross-link repair. Curr Mol Med. 2009, 9: 401-410. 10.2174/156652409788167050.
Article
CAS
PubMed
Google Scholar
Vaupel P, Mayer A: Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26: 225-239. 10.1007/s10555-007-9055-1.
Article
CAS
PubMed
Google Scholar
Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ: Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res. 2007, 167: 127-145. 10.1667/RR0719.1.
Article
CAS
PubMed
Google Scholar
Hockel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, Knapstein PG, Vaupel P: Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol. 1993, 26: 45-50. 10.1016/0167-8140(93)90025-4.
Article
CAS
PubMed
Google Scholar
Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996, 56: 4509-4515.
CAS
PubMed
Google Scholar
Fyles A, Milosevic M, Hedley D, Pintilie M, Levin W, Manchul L, Hill RP: Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol. 2002, 20: 680-687. 10.1200/JCO.20.3.680.
Article
CAS
PubMed
Google Scholar
Knocke TH, Weitmann HD, Feldmann HJ, Selzer E, Potter R: Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol. 1999, 53: 99-104. 10.1016/S0167-8140(99)00139-5.
Article
CAS
PubMed
Google Scholar
Lyng H, Sundfor K, Trope C, Rofstad EK: Disease control of uterine cervical cancer: relationships to tumor oxygen tension, vascular density, cell density, and frequency of mitosis and apoptosis measured before treatment and during radiotherapy. Clin Cancer Res. 2000, 6: 1104-1112.
CAS
PubMed
Google Scholar
Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, et al: Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol. 2005, 77: 18-24. 10.1016/j.radonc.2005.06.038.
Article
PubMed
Google Scholar
Chan N, Bristow RG: “Contextual” synthetic lethality and/or loss of heterozygosity: tumor hypoxia and modification of DNA repair. Clin Cancer Res. 2010, 16: 4553-4560. 10.1158/1078-0432.CCR-10-0527.
Article
CAS
PubMed
Google Scholar
Vaupel P: The role of hypoxia-induced factors in tumor progression. Oncologist. 2004, 9 (Suppl 5): 10-17.
Article
CAS
PubMed
Google Scholar
Bristow RG, Hill RP: Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008, 8: 180-192. 10.1038/nrc2344.
Article
CAS
PubMed
Google Scholar
Rofstad EK, Galappathi K, Mathiesen B, Ruud EB: Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res. 2007, 13: 1971-1978. 10.1158/1078-0432.CCR-06-1967.
Article
CAS
PubMed
Google Scholar
Hoogsteen IJ, Marres HA, van der Kogel AJ, Kaanders JH: The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin Oncol (R Coll Radiol). 2007, 19: 385-396. 10.1016/j.clon.2007.03.001.
Article
CAS
Google Scholar
Papandreou I, Powell A, Lim AL, Denko N: Cellular reaction to hypoxia: sensing and responding to an adverse environment. Mutat Res. 2005, 569: 87-100. 10.1016/j.mrfmmm.2004.06.054.
Article
CAS
PubMed
Google Scholar
Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM: ATM activation and signaling under hypoxic conditions. Mol Cell Biol. 2009, 29: 526-537. 10.1128/MCB.01301-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Freiberg RA, Hammond EM, Dorie MJ, Welford SM, Giaccia AJ: DNA damage during reoxygenation elicits a Chk2-dependent checkpoint response. Mol Cell Biol. 2006, 26: 1598-1609. 10.1128/MCB.26.5.1598-1609.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gibson SL, Bindra RS, Glazer PM: CHK2-dependent phosphorylation of BRCA1 in hypoxia. Radiat Res. 2006, 166: 646-651. 10.1667/RR0660.1.
Article
CAS
PubMed
Google Scholar
Olcina M, Lecane PS, Hammond EM: Targeting hypoxic cells through the DNA damage response. Clin Cancer Res. 2010, 16: 5624-5629. 10.1158/1078-0432.CCR-10-0286.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pires IM, Bencokova Z, McGurk C, Hammond EM: Exposure to acute hypoxia induces a transient DNA damage response which includes Chk1 and TLK1. Cell Cycle. 2010, 9: 2502-2507.
Article
PubMed Central
CAS
PubMed
Google Scholar
Subarsky P, Hill RP: The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis. 2003, 20: 237-250. 10.1023/A:1022939318102.
Article
CAS
PubMed
Google Scholar
Sullivan R, Graham CH: Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev. 2007, 26: 319-331. 10.1007/s10555-007-9062-2.
Article
CAS
PubMed
Google Scholar
Chaudary N, Hill RP: Hypoxia and metastasis. Clin Cancer Res. 2007, 13: 1947-1949. 10.1158/1078-0432.CCR-06-2971.
Article
CAS
PubMed
Google Scholar
Spiro IJ, Rice GC, Durand RE, Stickler R, Ling CC: Cell killing, radiosensitization and cell cycle redistribution induced by chronic hypoxia. Int J Radiat Oncol Biol Phys. 1984, 10: 1275-1280. 10.1016/0360-3016(84)90332-8.
Article
CAS
PubMed
Google Scholar
Murray D, Meyn RE, Vanankeren SC: Variations in the spectrum of lesions produced in the DNA of cells from mouse tissues after exposure to gamma-rays in air-breathing or in artificially anoxic animals. Int J Radiat Biol Relat Stud Phys Chem Med. 1988, 53: 921-933. 10.1080/09553008814551291.
Article
CAS
PubMed
Google Scholar
Zhang H, Koch CJ, Wallen CA, Wheeler KT: Radiation-induced DNA damage in tumors and normal tissues. III. Oxygen dependence of the formation of strand breaks and DNA-protein crosslinks. Radiat Res. 1995, 142: 163-168. 10.2307/3579024.
Article
CAS
PubMed
Google Scholar
Chan N, Milosevic M, Bristow RG: Tumor hypoxia, DNA repair and prostate cancer progression: new targets and new therapies. Future Oncol. 2007, 3: 329-341. 10.2217/14796694.3.3.329.
Article
CAS
PubMed
Google Scholar
Overgaard J: Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 2007, 25: 4066-4074. 10.1200/JCO.2007.12.7878.
Article
PubMed
Google Scholar
Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 2012, 148: 399-408. 10.1016/j.cell.2012.01.021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson WR, Hay MP: Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011, 11: 393-410. 10.1038/nrc3064.
Article
CAS
PubMed
Google Scholar
Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J: hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008, 14: 1340-1348. 10.1158/1078-0432.CCR-07-1755.
Article
CAS
PubMed
Google Scholar
Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ: Generation of a mouse model of Von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1alpha. Cancer Res. 2011, 71: 6848-6856. 10.1158/0008-5472.CAN-11-1745.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoo YG, Christensen J, Huang LE: HIF-1alpha confers aggressive malignant traits on human tumor cells independent of its canonical transcriptional function. Cancer Res. 2011, 71: 1244-1252. 10.1158/0008-5472.CAN-10-2360.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T, Sato F, Mimata H, Seto M, Moriyama M: Overexpression of miR-210, a downstream target of HIF1alpha, causes centrosome amplification in renal carcinoma cells. J Pathol. 2011, 224: 280-288. 10.1002/path.2860.
Article
CAS
PubMed
Google Scholar
Doe MR, Ascano JM, Kaur M, Cole MD: Myc Posttranscriptionally Induces HIF1 Protein and Target Gene Expression in Normal and Cancer Cells. Cancer Res. 2012, 72: 949-957. 10.1158/0008-5472.CAN-11-2371.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pires IM, Bencokova Z, Milani M, Folkes LK, Li JL, Stratford MR, Harris AL, Hammond EM: Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res. 2010, 70: 925-935. 10.1158/0008-5472.CAN-09-2715.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zafarana G, Ishkanian AS, Malloff CA, Locke JA, Sykes J, Thoms J, Lam WL, Squire JA, Yoshimoto M, Ramnarine VR, et al: Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer. 2012, 118: 4053-4062. 10.1002/cncr.26729.
Article
CAS
PubMed
Google Scholar
Huang LE, Bindra RS, Glazer PM, Harris AL: Hypoxia-induced genetic instability–a calculated mechanism underlying tumor progression. J Mol Med. 2007, 85: 139-148. 10.1007/s00109-006-0133-6.
Article
CAS
PubMed
Google Scholar
Hammond EM, Dorie MJ, Giaccia AJ: ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem. 2003, 278: 12207-12213. 10.1074/jbc.M212360200.
Article
CAS
PubMed
Google Scholar
Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS: NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS One. 2011, 6: e23945-10.1371/journal.pone.0023945.
Article
PubMed Central
CAS
PubMed
Google Scholar
O”Driscoll M, Jeggo PA: The role of double-strand break repair - insights from human genetics. Nat Rev Genet. 2006, 7: 45-54.
Article
CAS
Google Scholar
Shimada M, Nakanishi M: DNA damage checkpoints and cancer. J Mol Histol. 2006, 37: 253-260. 10.1007/s10735-006-9039-4.
Article
CAS
PubMed
Google Scholar
Li L, Zou L: Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem. 2005, 94: 298-306. 10.1002/jcb.20355.
Article
CAS
PubMed
Google Scholar
Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ: Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol. 2002, 22: 1834-1843. 10.1128/MCB.22.6.1834-1843.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gibson SL, Bindra RS, Glazer PM: Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner. Cancer Res. 2005, 65: 10734-10741. 10.1158/0008-5472.CAN-05-1160.
Article
CAS
PubMed
Google Scholar
Freiberg RA, Krieg AJ, Giaccia AJ, Hammond EM: Checking in on hypoxia/reoxygenation. Cell Cycle. 2006, 5: 1304-1307. 10.4161/cc.5.12.2811.
Article
CAS
PubMed
Google Scholar
Bouquet F, Ousset M, Biard D, Fallone F, Dauvillier S, Frit P, Salles B, Muller C: A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci. 2011, 124: 1943-1951. 10.1242/jcs.078030.
Article
CAS
PubMed
Google Scholar
Harding SM, Coackley C, Bristow RG: ATM-dependent phosphorylation of 53BP1 in response to genomic stress in oxic and hypoxic cells. Radiother Oncol. 2011, 99: 307-312. 10.1016/j.radonc.2011.05.039.
Article
CAS
PubMed
Google Scholar
Kim BM, Choi JY, Kim YJ, Woo HD, Chung HW: Reoxygenation following hypoxia activates DNA-damage checkpoint signaling pathways that suppress cell-cycle progression in cultured human lymphocytes. FEBS Lett. 2007, 581: 3005-3012. 10.1016/j.febslet.2007.05.053.
Article
CAS
PubMed
Google Scholar
Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV: Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem. 2001, 276: 7919-7926. 10.1074/jbc.M010189200.
Article
CAS
PubMed
Google Scholar
Gardner LB, Li F, Yang X, Dang CV: Anoxic fibroblasts activate a replication checkpoint that is bypassed by E1a. Mol Cell Biol. 2003, 23: 9032-9045. 10.1128/MCB.23.24.9032-9045.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang L, Gao J, Dai W, Lu L: Activation of Polo-like kinase 3 by hypoxic stresses. J Biol Chem. 2008, 283: 25928-25935. 10.1074/jbc.M801326200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tan C, Zhang LY, Chen H, Xiao L, Liu XP, Zhang JX: Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells. Biochem Biophys Res Commun. 2011, 416: 403-408. 10.1016/j.bbrc.2011.11.054.
Article
CAS
PubMed
Google Scholar
Chan N, Koritzinsky M, Zhao H, Bindra R, Glazer PM, Powell S, Belmaaza A, Wouters B, Bristow RG: Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res. 2008, 68: 605-614. 10.1158/0008-5472.CAN-07-5472.
Article
CAS
PubMed
Google Scholar
Hubbi ME, Kshitiz , Gilkes DM, Rey S, Wong CC, Luo W, Kim DH, Dang CV, Levchenko A, Semenza GL: A nontranscriptional role for HIF-1alpha as a direct inhibitor of DNA replication. Sci Signal. 2013, 6: ra10-10.1126/scisignal.2003417.
Article
PubMed Central
PubMed
CAS
Google Scholar
Hubbi ME, Luo W, Baek JH, Semenza GL: MCM proteins are negative regulators of hypoxia-inducible factor 1. Mol Cell. 2011, 42: 700-712. 10.1016/j.molcel.2011.03.029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Papp-Szabo E, Josephy PD, Coomber BL: Microenvironmental influences on mutagenesis in mammary epithelial cells. Int J Cancer. 2005, 116: 679-685. 10.1002/ijc.21088.
Article
CAS
PubMed
Google Scholar
Keysar SB, Trncic N, Larue SM, Fox MH: Hypoxia/reoxygenation-induced mutations in mammalian cells detected by the flow cytometry mutation assay and characterized by mutant spectrum. Radiat Res. 2010, 173: 21-26. 10.1667/RR1838.1.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reynolds TY, Rockwell S, Glazer PM: Genetic instability induced by the tumor microenvironment. Cancer Res. 1996, 56: 5754-5757.
CAS
PubMed
Google Scholar
Li CY, Little JB, Hu K, Zhang W, Zhang L, Dewhirst MW, Huang Q: Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res. 2001, 61: 428-432.
CAS
PubMed
Google Scholar
Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA: Can chromosomal instability initiate tumorigenesis?. Semin Cancer Biol. 2005, 15: 43-49. 10.1016/j.semcancer.2004.09.007.
Article
CAS
PubMed
Google Scholar
Geiersbach KB, Samowitz WS: Microsatellite instability and colorectal cancer. Arch Pathol Lab Med. 2011, 135: 1269-1277. 10.5858/arpa.2011-0035-RA.
Article
CAS
PubMed
Google Scholar
Shahrzad S, Quayle L, Stone C, Plumb C, Shirasawa S, Rak JW, Coomber BL: Ischemia-induced K-ras mutations in human colorectal cancer cells: role of microenvironmental regulation of MSH2 expression. Cancer Res. 2005, 65: 8134-8141. 10.1158/0008-5472.CAN-05-0713.
Article
CAS
PubMed
Google Scholar
Edwards RA, Witherspoon M, Wang K, Afrasiabi K, Pham T, Birnbaumer L, Lipkin SM: Epigenetic repression of DNA mismatch repair by inflammation and hypoxia in inflammatory bowel disease-associated colorectal cancer. Cancer Res. 2009, 69: 6423-6429. 10.1158/0008-5472.CAN-09-1285.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kondo A, Safaei R, Mishima M, Niedner H, Lin X, Howell SB: Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res. 2001, 61: 7603-7607.
CAS
PubMed
Google Scholar
Furlan D, Sahnane N, Carnevali I, Cerutti R, Bertoni F, Kwee I, Uccella S, Bertolini V, Chiaravalli AM, Capella C: Up-regulation of the hypoxia-inducible factor-1 transcriptional pathway in colorectal carcinomas. Hum Pathol. 2008, 39: 1483-1494. 10.1016/j.humpath.2008.02.013.
Article
CAS
PubMed
Google Scholar
Lehtonen HJ, Makinen MJ, Kiuru M, Laiho P, Herva R, van Minderhout I, Hogendoorn PC, Cornelisse C, Devilee P, Launonen V, Aaltonen LA: Increased HIF1 alpha in SDH and FH deficient tumors does not cause microsatellite instability. Int J Cancer. 2007, 121: 1386-1389. 10.1002/ijc.22819.
Article
CAS
PubMed
Google Scholar
Rice GC, Hoy C, Schimke RT: Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1986, 83: 5978-5982. 10.1073/pnas.83.16.5978.
Article
PubMed Central
CAS
PubMed
Google Scholar
Young SD, Marshall RS, Hill RP: Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A. 1988, 85: 9533-9537. 10.1073/pnas.85.24.9533.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rofstad EK, Johnsen NM, Lyng H: Hypoxia-induced tetraploidisation of a diploid human melanoma cell line in vitro. Br J Cancer Suppl. 1996, 27: S136-S139.
PubMed Central
CAS
PubMed
Google Scholar
Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M: A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell. 1998, 2: 259-265. 10.1016/S1097-2765(00)80137-9.
Article
CAS
PubMed
Google Scholar
Yuan J, Narayanan L, Rockwell S, Glazer PM: Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res. 2000, 60: 4372-4376.
CAS
PubMed
Google Scholar
Coquelle A, Rozier L, Dutrillaux B, Debatisse M: Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene. 2002, 21: 7671-7679. 10.1038/sj.onc.1205880.
Article
CAS
PubMed
Google Scholar
Mihaylova VT, Bindra RS, Yuan J, Campisi D, Narayanan L, Jensen R, Giordano F, Johnson RS, Rockwell S, Glazer PM: Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol. 2003, 23: 3265-3273. 10.1128/MCB.23.9.3265-3273.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Banath JP, Sinnott L, Larrivee B, MacPhail SH, Olive PL: Growth of V79 cells as xenograft tumors promotes multicellular resistance but does not increase spontaneous or radiation-induced mutant frequency. Radiat Res. 2005, 164: 733-744. 10.1667/3474.1.
Article
CAS
PubMed
Google Scholar
Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL, Modrich P, Huang LE: HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell. 2005, 17: 793-803. 10.1016/j.molcel.2005.02.015.
Article
CAS
PubMed
Google Scholar
Fischer U, Radermacher J, Mayer J, Mehraein Y, Meese E: Tumor hypoxia: impact on gene amplification in glioblastoma. Int J Oncol. 2008, 33: 509-515.
CAS
PubMed
Google Scholar
Rodriguez-Jimenez FJ, Moreno-Manzano V, Lucas-Dominguez R, Sanchez-Puelles JM: Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells. 2008, 26: 2052-2062. 10.1634/stemcells.2007-1016.
Article
CAS
PubMed
Google Scholar
Lee JH, Choi IJ, Song DK, Kim DK: Genetic instability in the human lymphocyte exposed to hypoxia. Cancer Genet Cytogenet. 2010, 196: 83-88. 10.1016/j.cancergencyto.2009.09.002.
Article
CAS
PubMed
Google Scholar
Kumareswaran R, Ludkovski O, Meng A, Sykes J, Pintilie M, Bristow RG: Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. J Cell Sci. 2012, 125: 189-199. 10.1242/jcs.092262.
Article
CAS
PubMed
Google Scholar
Mondello C, Smirnova A, Giulotto E: Gene amplification, radiation sensitivity and DNA double-strand breaks. Mutat Res. 2010, 704: 29-37. 10.1016/j.mrrev.2010.01.008.
Article
CAS
PubMed
Google Scholar
Popp HD, Bohlander SK: Genetic instability in inherited and sporadic leukemias. Genes Chromosomes Cancer. 2010, 49: 1071-1081. 10.1002/gcc.20823.
Article
CAS
PubMed
Google Scholar
Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Ponder BA, Venkitaraman AR: Involvement of Brca2 in DNA repair. Mol Cell. 1998, 1: 347-357. 10.1016/S1097-2765(00)80035-0.
Article
CAS
PubMed
Google Scholar
Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR: Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 2000, 14: 1400-1406.
PubMed Central
CAS
PubMed
Google Scholar
Venkitaraman AR: Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol. 2009, 4: 461-487. 10.1146/annurev.pathol.3.121806.151422.
Article
CAS
PubMed
Google Scholar
Walsh CS, Ogawa S, Scoles DR, Miller CW, Kawamata N, Narod SA, Koeffler HP, Karlan BY: Genome-wide loss of heterozygosity and uniparental disomy in BRCA1/2-associated ovarian carcinomas. Clin Cancer Res. 2008, 14: 7645-7651. 10.1158/1078-0432.CCR-08-1291.
Article
PubMed Central
CAS
PubMed
Google Scholar
Min J, Choi ES, Hwang K, Kim J, Sampath S, Venkitaraman AR, Lee H: The Breast Cancer Susceptibility Gene BRCA2 Is Required for the Maintenance of Telomere Homeostasis. J Biol Chem. 2012, 287: 5091-5101. 10.1074/jbc.M111.278994.
Article
PubMed Central
CAS
PubMed
Google Scholar
Johnson AB, Barton MC: Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res. 2007, 618: 149-162. 10.1016/j.mrfmmm.2006.10.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arlt MF, Durkin SG, Ragland RL, Glover TW: Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst). 2006, 5: 1126-1135. 10.1016/j.dnarep.2006.05.010.
Article
CAS
Google Scholar
Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, le Sage C, Chen BP, Chen DJ, Agami R, Kerem B: Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev. 2005, 19: 2715-2726. 10.1101/gad.340905.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ozeri-Galai E, Schwartz M, Rahat A, Kerem B: Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene. 2008, 27: 2109-2117. 10.1038/sj.onc.1210849.
Article
CAS
PubMed
Google Scholar
Tanaka H, Yao MC: Palindromic gene amplification–an evolutionarily conserved role for DNA inverted repeats in the genome. Nat Rev Cancer. 2009, 9: 216-224. 10.1038/nrc2591.
Article
CAS
PubMed
Google Scholar
Wilson DM, Thompson LH: Molecular mechanisms of sister-chromatid exchange. Mutat Res. 2007, 616: 11-23. 10.1016/j.mrfmmm.2006.11.017.
Article
CAS
PubMed
Google Scholar
Avidor-Reiss T, Gopalakrishnan J: Building a centriole. Curr Opin Cell Biol. 2013, 25: 72-77. 10.1016/j.ceb.2012.10.016.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chan JY: A clinical overview of centrosome amplification in human cancers. Int J Biol Sci. 2011, 7: 1122-1144.
Article
PubMed Central
CAS
PubMed
Google Scholar
Duijf PH, Benezra R: The cancer biology of whole-chromosome instability. Oncogene. 2013, 32: 4727-4736. 10.1038/onc.2012.616.
Article
CAS
PubMed
Google Scholar
Moser SC, Bensaddek D, Ortmann B, Maure JF, Mudie S, Blow JJ, Lamond AI, Swedlow JR, Rocha S: PHD1 Links Cell-Cycle Progression to Oxygen Sensing through Hydroxylation of the Centrosomal Protein Cep192. Dev Cell. 2013, 26: 381-392. 10.1016/j.devcel.2013.06.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bristow RG, Ozcelik H, Jalali F, Chan N, Vesprini D: Homologous recombination and prostate cancer: a model for novel DNA repair targets and therapies. Radiother Oncol. 2007, 83: 220-230. 10.1016/j.radonc.2007.04.016.
Article
CAS
PubMed
Google Scholar
Meng AX, Jalali F, Cuddihy A, Chan N, Bindra RS, Glazer PM, Bristow RG: Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiother Oncol. 2005, 76: 168-176. 10.1016/j.radonc.2005.06.025.
Article
CAS
PubMed
Google Scholar
Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE: HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004, 23: 1949-1956. 10.1038/sj.emboj.7600196.
Article
PubMed Central
CAS
PubMed
Google Scholar
To KK, Sedelnikova OA, Samons M, Bonner WM, Huang LE: The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2alpha in NBS1 repression. EMBO J. 2006, 25: 4784-4794. 10.1038/sj.emboj.7601369.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayashi M, Yoo YY, Christensen J, Huang LE: Requirement of evading apoptosis for HIF-1alpha-induced malignant progression in mouse cells. Cell Cycle. 2011, 10: 2364-2372. 10.4161/cc.10.14.16313.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K, Roth ME, Lizardi P, Hedley DW, Bristow RG, Glazer PM: Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol Cell Biol. 2004, 24: 8504-8518. 10.1128/MCB.24.19.8504-8518.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K, Roth ME, Lizardi P, Hedley DW, Bristow RG, Glazer PM: Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Ann N Y Acad Sci. 2005, 1059: 184-195. 10.1196/annals.1339.049.
Article
CAS
PubMed
Google Scholar
Bindra RS, Glazer PM: Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett. 2007, 252: 93-103. 10.1016/j.canlet.2006.12.011.
Article
CAS
PubMed
Google Scholar
Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR, Bhogal N, Lakshman M, Gottipati P, Oliver FJ, Helleday T, et al: Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res. 2010, 70: 8045-8054. 10.1158/0008-5472.CAN-10-2352.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wouters BG, Koritzinsky M: Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008, 8: 851-864. 10.1038/nrc2501.
Article
CAS
PubMed
Google Scholar
Lu Y, Chu A, Turker MS, Glazer PM: Hypoxia-Induced Epigenetic Regulation and Silencing of the BRCA1 Promoter. Mol Cell Biol. 2011, 31: 3339-3350. 10.1128/MCB.01121-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Crosby ME, Kulshreshtha R, Ivan M, Glazer PM: MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009, 69: 1221-1229. 10.1158/0008-5472.CAN-08-2516.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, Woodward WA, Hsu JM, Hortobagyi GN, Hung MC: EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell. 2011, 19: 86-100. 10.1016/j.ccr.2010.10.035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G: MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 2010, 9: 108-10.1186/1476-4598-9-108.
Article
PubMed Central
PubMed
CAS
Google Scholar
Tsuchimoto T, Sakata K, Someya M, Yamamoto H, Hirayama R, Matsumoto Y, Furusawa Y, Hareyama M: Gene expression associated with DNA-dependent protein kinase activity under normoxia, hypoxia, and reoxygenation. J Radiat Res. 2011, 52: 464-471. 10.1269/jrr.10137.
Article
CAS
PubMed
Google Scholar
Wirthner R, Wrann S, Balamurugan K, Wenger RH, Stiehl DP: Impaired DNA double-strand break repair contributes to chemoresistance in HIF-1 alpha-deficient mouse embryonic fibroblasts. Carcinogenesis. 2008, 29: 2306-2316. 10.1093/carcin/bgn231.
Article
CAS
PubMed
Google Scholar
Lara PC, Lloret M, Clavo B, Apolinario RM, Bordon E, Rey A, Falcon O, Alonso AR, Belka C: Hypoxia downregulates Ku70/80 expression in cervical carcinoma tumors. Radiother Oncol. 2008, 89: 222-226. 10.1016/j.radonc.2008.07.018.
Article
CAS
PubMed
Google Scholar
He F, Li L, Kim D, Wen B, Deng X, Gutin PH, Ling CC, Li GC: Adenovirus-mediated expression of a dominant negative Ku70 fragment radiosensitizes human tumor cells under aerobic and hypoxic conditions. Cancer Res. 2007, 67: 634-642. 10.1158/0008-5472.CAN-06-1860.
Article
CAS
PubMed
Google Scholar
Sprong D, Janssen HL, Vens C, Begg AC: Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int J Radiat Oncol Biol Phys. 2006, 64: 562-572. 10.1016/j.ijrobp.2005.09.031.
Article
CAS
PubMed
Google Scholar
Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, Bristow RG, Classon MK, Glazer PM: Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 2005, 65: 11597-11604. 10.1158/0008-5472.CAN-05-2119.
Article
CAS
PubMed
Google Scholar
Madan E, Gogna R, Pati U: p53Ser15 Phosphorylation disrupts p53-RPA70 complex and induces RPA70-mediated DNA repair in hypoxia. Biochem J. 2012, 443: 811-820. 10.1042/BJ20111627.
Article
CAS
PubMed
Google Scholar
Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS: Resolution of anaphase bridges in cancer cells. Chromosoma. 2004, 112: 389-397.
Article
PubMed
Google Scholar
Wimmer K, Etzler J: Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg?. Hum Genet. 2008, 124: 105-122. 10.1007/s00439-008-0542-4.
Article
PubMed
Google Scholar
Li J, Koike J, Kugoh H, Arita M, Ohhira T, Kikuchi Y, Funahashi K, Takamatsu K, Boland CR, Koi M, Hemmi H: Down-regulation of MutS homolog 3 by hypoxia in human colorectal cancer. Biochim Biophys Acta. 2012, 1823: 889-899. 10.1016/j.bbamcr.2012.01.017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000, 16: 653-699. 10.1146/annurev.cellbio.16.1.653.
Article
CAS
PubMed
Google Scholar
Nakamura H, Tanimoto K, Hiyama K, Yunokawa M, Kawamoto T, Kato Y, Yoshiga K, Poellinger L, Hiyama E, Nishiyama M: Human mismatch repair gene, MLH1, is transcriptionally repressed by the hypoxia-inducible transcription factors, DEC1 and DEC2. Oncogene. 2008, 27: 4200-4209. 10.1038/onc.2008.58.
Article
CAS
PubMed
Google Scholar
Nouspikel T: DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility. Cell Mol Life Sci. 2009, 66: 994-1009. 10.1007/s00018-009-8737-y.
Article
CAS
PubMed
Google Scholar
Rezvani HR, Mahfouf W, Ali N, Chemin C, Ged C, Kim AL, de Verneuil H, Taieb A, Bickers DR, Mazurier F: Hypoxia-inducible factor-1alpha regulates the expression of nucleotide excision repair proteins in keratinocytes. Nucleic Acids Res. 2010, 38: 797-809. 10.1093/nar/gkp1072.
Article
PubMed Central
CAS
PubMed
Google Scholar
Filippi S, Latini P, Frontini M, Palitti F, Egly JM, Proietti-De-Santis L: CSB protein is (a direct target of HIF-1 and) a critical mediator of the hypoxic response. EMBO J. 2008, 27: 2545-2556. 10.1038/emboj.2008.180.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kitao H, Takata M: Fanconi anemia: a disorder defective in the DNA damage response. Int J Hematol. 2011, 93: 417-424. 10.1007/s12185-011-0777-z.
Article
CAS
PubMed
Google Scholar
Kuhnert VM, Kachnic LA, Li L, Purschke M, Gheorghiu L, Lee R, Held KD, Willers H: FANCD2-deficient human fibroblasts are hypersensitive to ionising radiation at oxygen concentrations of 0% and 3% but not under normoxic conditions. Int J Radiat Biol. 2009, 85: 523-531. 10.1080/09553000902883810.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramaekers CH, van den Beucken T, Meng A, Kassam S, Thoms J, Bristow RG, Wouters BG: Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T. Radiother Oncol. 2011, 101: 190-197. 10.1016/j.radonc.2011.05.059.
Article
CAS
PubMed
Google Scholar
Sun JD, Liu Q, Wang J, Ahluwalia D, Ferraro D, Wang Y, Duan JX, Ammons WS, Curd JG, Matteucci MD, Hart CP: Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res. 2012, 18: 758-770. 10.1158/1078-0432.CCR-11-1980.
Article
CAS
PubMed
Google Scholar
van den Beucken T, Magagnin MG, Jutten B, Seigneuric R, Lambin P, Koritzinsky M, Wouters BG: Translational control is a major contributor to hypoxia induced gene expression. Radiother Oncol. 2011, 99: 379-384. 10.1016/j.radonc.2011.05.058.
Article
CAS
PubMed
Google Scholar
Zhao H, Luoto KR, Meng AX, Bristow RG: The receptor tyrosine kinase inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination. Radiother Oncol. 2011, 101: 59-65. 10.1016/j.radonc.2011.08.013.
Article
CAS
PubMed
Google Scholar
Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R, Gadisetti C, Subramanian S, Devasahayam N, Munasinghe JP, Mitchell JB, Krishna MC: Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res. 2011, 71: 6350-6359. 10.1158/0008-5472.CAN-11-2025.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaelin WG: The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005, 5: 689-698. 10.1038/nrc1691.
Article
CAS
PubMed
Google Scholar
Chalmers AJ, Lakshman M, Chan N, Bristow RG: Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets. Semin Radiat Oncol. 2010, 20: 274-281. 10.1016/j.semradonc.2010.06.001.
Article
PubMed
Google Scholar
Hegan DC, Lu Y, Stachelek GC, Crosby ME, Bindra RS, Glazer PM: Inhibition of poly(ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proc Natl Acad Sci U S A. 2010, 107: 2201-2206. 10.1073/pnas.0904783107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rajesh C, Baker DK, Pierce AJ, Pittman DL: The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion. Nucleic Acids Res. 2011, 39: 132-145. 10.1093/nar/gkq738.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feng Z, Scott SP, Bussen W, Sharma GG, Guo G, Pandita TK, Powell SN: Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci U S A. 2011, 108: 686-691. 10.1073/pnas.1010959107.
Article
PubMed Central
CAS
PubMed
Google Scholar
McEllin B, Camacho CV, Mukherjee B, Hahm B, Tomimatsu N, Bachoo RM, Burma S: PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res. 2010, 70: 5457-5464. 10.1158/0008-5472.CAN-09-4295.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fraser M, Zhao H, Luoto KR, Lundin C, Coackley C, Chan N, Joshua AM, Bismar TA, Evans A, Helleday T, Bristow RG: PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin Cancer Res. 2012, 18: 1015-1027. 10.1158/1078-0432.CCR-11-2189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin SA, McCabe N, Mullarkey M, Cummins R, Burgess DJ, Nakabeppu Y, Oka S, Kay E, Lord CJ, Ashworth A: DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell. 2010, 17: 235-248. 10.1016/j.ccr.2009.12.046.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin SA, Hewish M, Sims D, Lord CJ, Ashworth A: Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers. Cancer Res. 2011, 71: 1836-1848. 10.1158/0008-5472.CAN-10-2836.
Article
CAS
PubMed
Google Scholar