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Resolution of complex ends by non-homologous
end joining - better to be lucky than good?
Natasha Tiffany Strande, Crystal Ann Waters and Dale A Ramsden*
Abstract

The non-homologous end joining pathway is essential for efficient repair of chromosome double strand breaks.
This pathway consequently plays a key role in cellular resistance to break-inducing exogenous agents, as well as in
the developmentally-programmed recombinations that are required for adaptive immunity. Chromosome breaks
often have complex or “dirty” end structures that can interfere with the critical ligation step in this pathway; we
review here how non-homologous end joining resolves such breaks.

Keywords: Double strand break repair, non-homologous end joining, DNA damage, Ionizing radiation
Double strand break repair and complex end
structures
DNA double strand breaks (DSBs) arise after replication,
aberrant repair of spontaneous damage, and exposure to
exogenous damaging agents, especially those used in
cancer therapies. DSBs are also intermediates in several
developmentally-programmed recombinations. Failed
DSB repair is typically lethal, while aberrant DSB repair
can lead to developmental defects, progeria, and cancer.
Repair pathways include Homologous recombination
(HR), non-homologous end joining (NHEJ), and Alter-
nate end joining (Alt-EJ) (reviewed in e.g. [1]). Import-
antly, HR is dependent on extensive (100s to 1000s of
nucleotides) DNA synthesis, a sister chromatid template
to direct this synthesis, and a homology search step
needed to find the template in a sister chromatid. In
contrast, NHEJ is primarily a ligation reaction and can
act independently of S-phase restricted sister chroma-
tids, dNTP generation [2], and other requirements for
extensive synthesis. Finally, a fraction of ligation-
mediated repair is independent of factors required for
classically defined NHEJ, and is thus termed “Alt-EJ”.
The primary disadvantage to resolving ends by ligation

is that biological sources of DSBs often produce “dirty”
or complex end structures that can interfere with this
step (Figure 1). DNA flanking the break may possess
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nucleotide damage, most frequently oxidized bases, vari-
ous classes of abasic sites, and 30 phosphate or 50 hy-
droxyl termini [3]. Such damage is especially likely in
the case of ionizing radiation-induced breaks, which are
associated with damage clusters [3,4]. DSB ends may be
further occluded by proteins, both non-covalently asso-
ciated (e.g. chromatin) and covalently adducted type II
topoisomerases [5]. Ends can also possess secondary
structures including hairpins or, after a pair of ends are
aligned together, gaps, mismatches, or flaps.
NHEJ resolves complex ends by employing a sophisti-

cated machine engineered to facilitate ligation despite
ligation-blocking lesions. A series of core factors are ne-
cessary and sufficient to recognize ends, align a pair of
ends together, and perform the ligation step (Figure 2).
Core factors include 1) Ku; a DNA end binding hetero-
dimer of 70 and 80 kD subunits (Ku70, Ku80), 2)
XRCC4-ligase IV (X4-LIV); an obligate oligomer of a lig-
ase catalytic subunit (DNA ligase IV) and scaffolding
subunit (XRCC4), 3) XRCC4-like factor (XLF, also
termed Cernunnos), and 4) DNA dependent protein kin-
ase catalytic subunit (DNA-PKcs); a 450 kD kinase
recruited to ends by Ku (reviewed in [6]). However, add-
itional factors are required, both to integrate NHEJ with
the DNA damage response and local chromatin struc-
ture [7], as well as (to be discussed here) to help this
core machine resolve complex ends (Table 1). NHEJ
employs these additional factors according to strategies
(Figure 2) for resolving complex ends we suggest can be
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Figure 1 Biological sources of DSBs generate complex end
structures. Examples include oxidized nucleotides, protein
occlusions, and secondary structures.

Table 1 End processing factors

Factor* Activity

APTX Removes 50-adenylate adducts [40]

PNKP Removes 30 phosphates and phosphorylates 50

hydroxyls [45]

APLF Histone chaperone [59] 30-50 exonuclease,
endonuclease [56,61]

TDP1 Removes Top I adducts [63], 30 deoxyribose
fragments [47,67,68]

TDP2 Removes Top II adducts [64]

XRCC5,XRCC6 (Ku) Removes 50-dRP residues and abasic sites [27]

POLM (Pol λ) Fills in gaps when ends align with no
complementarity [90]

POLL (Pol μ) Fills in gaps when ends are partly complementary
[86,90]

DCLRE1C (Artemis) Endonuclease, 50-30 exonuclease [100]

WRN 30-50 exonuclease [121,122] and 30-50 helicase [120]

MRE11/RAD50/NBN
(MRN)

30-50 exonuclease, endonuclease [101,129]

SETMAR (Metnase) Endonuclease/exonuclease [103]

*HUGO gene nomenclature: APTX, aprataxin; PNKP, polynucleotide kinase 30-
phosphatase; APLF, aprataxin and PNKP like factor; TDP1, tyrosyl-DNA
phosphodiesterase 1; TDP2, tyrosyl-DNA phosphodiesterase 2; XRCC5,XRCC6
(Ku80, Ku70), X-ray repair complementing defective repair in Chinese hamster
cells 5/6; POLM, polymerase mu; POLL, polymerase lambda; DCLRE1C (Artemis),
DNA cross-link repair 1C; WRN, Werner syndrome; MRE11/RAD50/NBN, meiotic
recombination 11 homolog/RAD50 homolog/nibrin (Nbs1), SETMAR, SET
domain and mariner transposase fusion gene (Metnase).
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roughly categorized as 1) tolerance (Figure 3), 2) end
“cleaning” (Figure 4), and 3) trial-and-error (Figure 5).

Tolerance of complex ends by low fidelity ligation
Ligation initiates with the transfer of an adenosine
monophosphate from a lysine within the ligase active
site to the 50 phosphate (Figure 3, step ii). The final step
in ligation has similarities to DNA synthesis, as the new
phosphodiester bond is made by a phosphoryl transfer
reaction, where the 30 hydroxyl terminus of one strand
Tolerance

Recruitment of Core Machinery

Ku 70/80
DNA-PKcs
Lig IV

XLF
XRCC4

End Cleaning Trial-and-error

End-Resolution Strategy

Extent of Damage 

Figure 2 NHEJ end-resolution strategies. Resolution of complex
ends by NHEJ first requires the recruitment of the core machinery
(Ku, DNA-PKcs, Ligase IV, XRCC4, and XLF). The type and extent of
damage varies, and this in turn probably dictates choice of strategy.
performs a nucleophillic attack on the activated 50 phos-
phate terminus of the second (Figure 3, step iii)
(reviewed in [8]). Importantly, most DNA ligases resem-
ble polymerases in that they are most active when join-
ing strands with termini complementary to a “template”
strand. Thus, in the same manner as polymerases, ligases
can be considered as high or low fidelity according to
the degree to which they tolerate mispairs or other helix
distortions in DNA flanking the bond to be made.
The XLF-X4-LIV splint and low fidelity ligation
X4-LIV can join together strand termini with flanking
mispairs more readily than other ligases [9,10], and thus
can be considered to be of low fidelity. Importantly, XLF
specifically promotes low-fidelity ligation [11,12]. Dimers
of XLF interact with dimers of XRCC4 and DNA [13-18],
resulting in DNA- bound (XLF-XRCC4)N filaments
[14,19-23] that eventually include or terminate in a X4-
LIV complex (Figure 3, step i). These filaments are
thought to act as a protein-“splint”, stabilizing an aligned
pair of ends. The splint could account for reduced ligation
fidelity by suppressing helix distortions associated after
alignment of complex end structures, or by simply in-
creasing the time the active site has to work with end
alignments with poorly oriented termini. Low-fidelity
ligation is advantageous for NHEJ as it increases the
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spectrum of complex ends that can be ligated together dir-
ectly without prior end processing.
However, there is a limit to what NHEJ’s ligase can toler-

ate [9,24-30], even with the XLF-X4-LIV splint. Notably,
DNA-PKcs-mediated phosphorylation of multiple sites
within XLF and XRCC4 disrupts the filament (Figure 3,
step v) [31]. This may relax (or release) unproductive
complexes of the ligase and aligned ends to give better ac-
cess to end processing enzymes required for other NHEJ
strategies (e.g, Figures 4, 5).
Additionally, like damage tolerance by translesion poly-

merases in replication, tolerance of complex end structures
by NHEJ is a form of procrastination – mismatched and
damaged nucleotides flanking the break site are not
repaired and thus retained in the joined product (junction).
Unresolved damage will interfere with subsequent tran-
scription or replication through the junction. Additionally,
attempted repair by other pathways (e.g. base excision re-
pair; BER) of residual damage clusters in junctions risks
re-breaking the site [32-36]. Sustained localization of NHEJ
factors (e.g. Ku, X4-LIV, XLF) after joining may even help
regulate BER activity.
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Figure 3 Joining by tolerance. The NHEJ core machinery can be
associated with an XLF-XRCC4 filament that may stabilize aligned
complex end structures (i) sufficiently to support transfer of the
adenylate from the ligase to 50 phosphate terminus (ii), possibly
through to complete ligation (iii). If ligation aborts, the 50 adenylated
(AMP) intermediate can be removed by Aprataxin (APTX) (iv). DNA-
PKcs-directed phosphorylation of XLF and XRCC4 can disrupt the
XLF-XRCC4 filament (v) to allow processing factors access to the
DNA to remove the obstruction.
Damage-specific end cleaning
Ligases cannot join ends unless they have 50 phosphate
and 30 hydroxyl termini, regardless of how stably a pair
of aligned termini are juxtaposed. In addition, NHEJ’s
ligation step is blocked by terminal or near-terminal aba-
sic sites [24-27,29] and when lesions or mismatches in
end structures are sufficiently helix distorting. Common
terminus-blocking lesions can be excised and the poten-
tially resulting gaps filled in before ligation (Figure 4).
As with other repair pathways (e.g. BER), NHEJ can thus
fully restore sequence at DSB sites, even when the break
was associated with ligation blocking damage [24].
To this end, NHEJ employs an array of enzymes that

partly overlap with BER and single strand break repair
(SSBR). Indeed, three of these factors – aprataxin
(APTX), polynucleotide kinase/phosphatase (PNKP),
and aprataxin and polynucleotide kinase/phosphatase
like factor (APLF) - employ N-terminal forkhead asso-
ciated (FHA) domains to mediate their participation in
both NHEJ and BER/SSBR pathways (reviewed in [37]).
These domains physically interact with XRCC4 [38] and
XRCC1 [39] to direct their participation in NHEJ and
BER/SSBR, respectively. FHA domain-mediated interac-
tions are stimulated by phosphorylation of XRCC4 and
XRCC1 by casein kinase II.

Aprataxin
As noted above, there is a limit to what the ligase can
tolerate. Attempts to tolerate complex end structures
can result in ligation failure at an intermediate step, after
adenylation of the 50 terminus but before the final phos-
phoryl transfer (Figure 3, step ii). A new ligase IV mol-
ecule cannot act on the 50 adenylated product of aborted
ligation; Aprataxin (APTX) resets the substrate for an-
other ligation attempt by removing 50-adenylate adducts
(Figure 3, step iv), as mediated by APTX’s zinc-finger-
histidine triad (HIT) domain [40].
Mutations in APTX account for several neurodegen-

erative disorders, including ataxia with oculomotor
apraxia type 1 (AOA1) [41,42]. However, sensitivity of
APTX deficient cells to various DNA damaging agents is
mild [43], and it has been difficult to detect measurable
differences in either SSBR or DSBR ([44] and references
therein). APTX is thus argued to act on a minor subset
of breaks [44], with the consequences of failed action in
an organism possibly disproportionate to the low fre-
quency of these events.

Polynucleotide kinase/phosphatase
50 hydroxyl and 30 phosphate termini are generated directly
by reactive oxygen species, after metabolization of certain
strand breaks (30- phosphoglycolate, 30-phosphotyrosine),
or by the action of endo-VIII-like glycosylases (Neil1 or
Neil2). PNKP has two catalytic domains sufficient to
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prepare such termini for ligation: a central domain that
removes 30 phosphates, and a C-terminal domain that
phosphorylates 50 hydroxyls [45] (reviewed in [46]). PNKP
was also shown to act coordinately with TDP1 to re-
move the 30 phosphate generated after removal of 30-
phosphoglycolate residues [47].
Mutations in PNKP result in microcephaly with early

onset intractable seizures and developmental delay (MCSZ)
[48]. A role for PNKP specifically in double strand break
repair is supported by sensitivity of PNKP deficient cells to
ionizing radiation [48,49], and PNKP is required for NHEJ
Ligation

i. Alignment

ii. N
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DNA-PKcs
Lig IV
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Nuclease

Figure 5 Trial and error. Ends can go through sequential rounds of end
until ligated. Alternatively, ends can be resected (iii) and Ku released, enabl
alternative end-joining (Alt-EJ) pathways.
of ends without 50 phosphate in cell extracts [50]. PNKP’s
contribution to radiation sensitivity relies to some extent
on damage-dependent phosphorylation of sites in PNKP
by DNA-PKcs and ATM [51,52].
Aprataxin and polynucleotide kinase/phosphatase like
factor
APLF (also referred to as PALF, C2orf13, and Xip1) pos-
sesses a tandem pair of poly(ADP-ribose) binding zinc fin-
ger (PBZ) motifs [53], which mediate recruitment of APLF
to damage [54-57] after poly(ADP) ribose polymerase-3
(PARP-3) modification of flanking chromatin [58]. Disrup-
tion of APLF’s PBZ domains attenuates X4-LIV accumula-
tion at DSB ends in cells, which in turn results in defects
in NHEJ of radiation induced breaks and DSB intermedi-
ates in class switch recombination [58]. This may be at
least partly because a network of interactions between
APLF, Ku [56,57], X4-LIV [57,58], DNA, and poly(ADP-ri-
bose) chromatin [57,58] could be required for stable as-
sembly of an NHEJ complex at ends. APLF also possesses
a conserved C-terminal domain with a NAP1L family his-
tone chaperone motif, which is sufficient to promote as-
sembly and disassembly of nucleosomes and nucleosome
substructures in vitro [59]. Ku can recognize DSB ends
even when on the surface of a nucleosome [28], but an ac-
tive NHEJ complex, including X4-LIV and DNA-PKcs,
requires at least 60 bp of free DNA flanking the end [60]
(probably more with an (XLF-X4)N splint). APLF, perhaps
triggered by coordinate recognition of ends by Ku and PBZ
mediated interactions with flanking poly(ADP-ribose)
modified chromatin, could direct a very limited remodeling
of nucleosomes flanking broken ends to make room for
subsequent loading of X4-LIV. APLF may additionally act
as an exonuclease and structure-specific endonuclease
[56,61] to resolve mismatches and flaps.
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Tyrosyl DNA phosphodiesterases
Topoisomerases (Top I, Top II) resolve DNA topological
stress associated with replication and transcription. They
employ a cleavage/ligation cycle with an intermediate
step where a tyrosine in the topoisomerase is covalently
linked to a strand break through 30 or 50 phosphate ter-
mini (Top I and top II, respectively) [62]. The cleavage/
ligation equilibrium can be altered (e.g. after treatment
with topoisomerase poisons) such that cells accumulate
strand breaks with termini adducted to a topoisomerase
through their active site tyrosine [5]. If a type I topo-
isomerase aborts, the topoisomerase is adducted to a
single strand break, 30 phosphate terminus; if a type II
topoisomerase aborts, the topoisomerase is adducted to
DSB 50 phosphate termini. Adducted topoisomerases can
be removed from DNA strand termini by reversal of the
covalent intermediate, through the action of tyrosyl-
DNA phosphodiesterases Tdp1 [63] and Tdp2 [64].
Tdp1’s primary substrates are the 30-phosphotyrosine

adducts generated by aborted type I topoisomerase ac-
tivity, either at SSBs, or DSBs generated after replication
through unrepaired SSBs [65,66]. Epistasis analysis indi-
cates Tdp1 activity on even the DSB-associated products
is upstream of repair by HR in S. cerevisae [66]. How-
ever, Tdp1 additionally has activity on other 30 phos-
phate adducts including 30-phosphoglycolates [67-71]
(Table 1), the most common class of nucleotide damage
associated with ionizing radiation induced strand breaks.
Tdp1 is required for resolution by NHEJ of substrates
with 30-phosphoglycolate termini in a cell extract model
[47], and patients with Tdp1 mutations (Spinocerebellar
ataxia with axonal neuropathy 1; SCAN-1) [72,73] are
sensitive to radiomimetic drugs that can introduce
strand breaks with 30-phosphoglycolate termini [47,74].
At the same time there are significant backup pathways
active in cells [75], possibly explaining why SCAN1 cells
are neither severely sensitive to ionizing radiation [71],
nor possess obvious defects in rates of DSB repair after
ionizing radiation [76].
Tdp2 (also termed TTRAP; TRAF and TNF receptor-

associated protein, and EAPII; ETS1 associated protein
II) is most active in removing tyrosines adducted to 50

phosphates at DSB ends [64,77], a product of aborted
type II topoisomerase action. Consistent with this speci-
ficity, Tdp2 is essential for resistance of chicken DT-40
cells to type II topoisomerase poisons (e.g. etoposide)
[78]. Tdp2 could in principle participate in either HR or
NHEJ pathways for DSB repair, and there are as yet no
reported epistasis analyses or physical interactions spe-
cifically linking Tdp2 to either. Nevertheless, a role for
Tdp2 uniquely within NHEJ seems most likely. Unlike
Top I adducts, there is little use for “clean” removal of
Top II adducts within the HR pathway, since the 50

strand must anyway be extensively resected as a pre-
requisite for the homology search step. Indeed, removal
of the Top II-like Spo11 adduct at DSB intermediates
during meiotic HR relies on the Mre11/Nbs1/CtIP com-
plex; this latter pathway is apparently Tdp2 independent,
as the excised Spo11 is still adducted to a short oligo-
nucleotide [79].

Ku
DSB with associated abasic sites, either 50 terminal (50-
deoxyribose phosphate; 50-dRP) or near-terminal (apuri-
nic/apyrimidinic; AP), can be generated directly by
ionizing radiation. However, they are probably more fre-
quently associated with DSB products of aborted base
excision repair, including the DSB intermediates in im-
munoglobulin class switch recombination [80,81]. Re-
gardless of source, NHEJ cannot join such ends together
both in vitro (whether or not XLF is present) [25-27,29]
or in cells [27,29] unless the abasic site is excised. Exci-
sion of these abasic sites is mediated both in vitro and in
cells primarily by the Ku heterodimer which, in addition
to its primary role in recognizing ends and recruiting
other factors, is a 50-dRP/AP lyase [27]. Notably, Ku’s 50-
dRP/AP activity is primarily restricted to substrates
where incision is both necessary and sufficient to pre-
pare ends for the ligation step [29]. Specifically, Ku is
much less active on abasic sites near 30 termini, where
incision by a lyase would leave a ligation blocking 30-α,
β-unsaturated aldehyde. Ku is similarly much less active
when abasic sites near 50 termini are significantly em-
bedded in duplex DNA, a context where the abasic site
no longer blocks the ligation step. The latter substrate
specificity is essentially non-overlapping relative to aba-
sic site metabolizing enzymes implicated in BER (AP
endonuclease, pol β), whose activities are mostly
restricted to sites with significant (>4 bp) flanking
dsDNA [26,27,29].

Family X polymerases
A variety of polymerases have been implicated in NHEJ
(also reviewed in [82]), but the majority of evidence
favors a primary role for several members of the mam-
malian family X polymerase: Pol λ, Pol μ, and Terminal
deoxynucleotidyl transferase (TdT). All three poly-
merases possess homologous N-terminal BRCT (Breast
cancer associated carboxy-terminal) domains [83] that
promote formation of a complex including the polyme-
rase, Ku and X4-LIV at DNA ends [84-90]. BRCT
domains have no impact on intrinsic catalytic activity
but are essential for the participation of the polymera-
ses in NHEJ, emphasizing the importance of coupling
their catalytic activities to a complex of aligned ends
[85,87,90]. The three polymerases have distinct substrate
requirements and activities, with decreasing dependence
on template strand, in order Pol λ>Pol μ>TdT [90]. All
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three have been clearly implicated in repair by NHEJ of
intermediates in V(D)J recombination [91-94], with
TdT’s entirely template independent activity observed
only during V(D)J recombination by virtue of its
restricted expression [95]. The other two polymerases
are expressed in all cell types and have overlapping ac-
tivities [83,96], making it difficult to parse their relative
contributions. In general, they fill in gaps present after
alignment of broken ends (the gap typically a conse-
quence of prior excision of damaged nucleotides by
enzymes discussed above). The action of Pol μ and Pol λ
thus further extends parallels between NHEJ and BER/
SSBR, and indeed Pol λ has roles in both [97-99], similar
to APTX, PNKP and APLF.

Trial and error
NHEJ can use enzymes that specifically and precisely re-
solve many of the end structures expected to interfere
with ligation of DSB ends. This means some fraction of
NHEJ can proceed by an ordered, three-step strategy (ex-
cision, replacement, ligation; Figure 4) essentially equiva-
lent to that used by base excision repair. However, such a
strategy will not always suffice for DSBs. Some end struc-
tures do not appear to be readily resolved by the available
enzymes (e.g. reduced abasic sites; [27,29]). Additionally, it
is not yet clear how well NHEJ can identify the enzyme
appropriate to a given context; this may be particularly
challenging at ends associated with densely-clustered
damage. A fraction of NHEJ could thus proceed by “trial
and error”. In this strategy, ends would be subject to se-
quential ligation attempts (Figure 5, step i, “trial”) and end
processing (Figure 5, step ii, “error”), with these steps
repeated until a substrate for ligation is generated. We
suggest that efficient resolution by this strategy implies a
need for regulated transition between steps.
This strategy employs processing factors that are more

likely to be endonucleases that target secondary structures
(single stranded overhangs, flaps, hairpins) and exonu-
cleases, including Artemis [100], MRN [101], Werner’s
syndrome protein [102], APLF [61], and Metnase [103].
Substrate specificities of these nucleases can be overlap-
ping, and are generally less precisely targeted than the
damage specific activities discussed above. Importantly,
the latter characteristic allows them to aid in resolution of
a wider variety of blocking lesions (more flexible), but the
ensuing products are typically associated with greater de-
letion of DNA flanking the break site and are more het-
erogeneous. Initial overhang sequence complementarity
will thus be reduced or lost, necessitating additional
rounds of processing for ligation.

Artemis
Artemis has been associated with 50>30 exonuclease ac-
tivity, but can be primarily linked to NHEJ through an
important role for its structure-specific endonuclease ac-
tivity [100]. The latter is mediated by a metallo β lacta-
mase associated with CPSF Artemis SNM1/PSO2
domain [104-106]. Nuclease activity is dependent on the
additional presence of DNA-PKcs at ends [100], as well
as DNA-PKcs autophosphorylation [107]. Artemis’s C
terminus is also phosphorylated by both DNA-PKcs and
the related Ataxia Telangiectasia Mutated (ATM) kinase
[106,108-112], and this may further help regulate Ar-
temis activity. Most notably, Artemis is required for
opening hairpins at broken ends. Such structures are
critical intermediates in the assembly of antigen specific
receptors by V(D)J recombination, consequently loss of
Artemis function results in severe immunodeficiency
[100,113]. Loss of Artemis also confers cellular sensitiv-
ity to IR [113-115], suggestive of a role for this nuclease
in resolving complex end structures expected from IR-
induced breaks. Consistent with this, Artemis generally
cleaves at ssDNA/dsDNA transitions, and thus can re-
move extended (>4 nucleotide) ssDNA overhangs and
flaps [100,109], as well as overhangs with ligation block-
ing nucleotide damage [116]. Notably, products of Arte-
mis nuclease activity are heterogenous, with sites of
cleavage often distributed over a 3-6 nucleotide range
[100,109,116,117]. For example, Artemis, like Tdp1, can
excise 30-phosphoglycolate termini in vitro but Artemis
typically deletes a variable number of nucleotides in
addition to the 30-phosphoglycolate residue [116]. Both
the increased deletion and deletion heterogeneity asso-
ciated with Artemis activity will more frequently necessi-
tate additional rounds of processing before ends can be
ligated, relative to the damage specific activities described
in the previous section [87].

Werners syndrome protein
Werners syndrome is associated with progeria [118] and
mild cellular sensitivity to ionizing radiation [119]. The
Werners syndrome gene product (WRN) has both 30>50

exonuclease and helicase activity [120-122], and associ-
ates with NHEJ core factors Ku [102,123] and X4-LIV
[124]. WRN activity is further regulated by DNA-PKcs
[119,125], and can cooperate with these NHEJ factors to
promote ligation in vitro after degradation of non-
complementary overhangs [124]. Notably, WRN can de-
grade through oxidative damage in the presence of Ku in
some contexts [126,127], possibly promoting NHEJ at
ends where the density of break-associated damage is
too high for damage specific resolutions.

Mre11/Rad50/Nbs1
The Mre11/Rad50/Nbs1 (MRN) complex (or Mre11/
Rad50/Xrs2 in S. cerevisae) is required for efficient sens-
ing of double strand breaks and helps bridge broken
ends together (reviewed in [128]). Similar to Artemis,
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MRN also has 30>50 exonuclease and single strand spe-
cific endonuclease activities (including hairpin opening
activity) [101,129], but while MRN has an important role
in mammalian NHEJ [130-132] this role is only partly
reliant on MRN’s nuclease activity [132]. Notably, MRN
nuclease activity is essential for removal of Spo11 cova-
lently adducted to 50 termini (a substrate analogous
to aborted Topoisomerase II complexes) [79,133]. How-
ever, activity of the MRN and CtIP complex on this sub-
strate precedes a more processive resection of 50 ends
(reviewed in [134]) that primarily channels these breaks
to repair by the homologous recombination pathway. In-
deed, MRN/CtIP may perform this function whenever
end structures cannot be resolved by any of the NHEJ
strategies discussed (Figure 5 step iii), allowing these
ends to be resolved instead by either alternate end join-
ing or homologous recombination. Consistent with this
idea, MRN’s nuclease activity has been implicated in re-
lease of Ku from DNA ends [135], thereby precluding
further futile NHEJ attempts.

Concluding remarks: is it better to be lucky than
good?
Complex end structures are diverse, explaining why
NHEJ employs three distinguishable strategies (Figure 2)
and a host of different processing activities (Table 1).
Moreover, processing activities have varying degrees of
substrate specificity, allowing NHEJ to balance precision
with flexibility during end processing. When processing
is required, these steps are appropriately ordered and
coupled to the ligation step within a multiprotein ma-
chine. NHEJ is therefore indispensible for efficient reso-
lution of complex end structures.
Ideally, NHEJ chooses a resolution strategy and proces-

sing factor in a manner that optimizes the efficiency and
fidelity of product. With respect to strategy, there may be
a means for sensing the extent of damage first and specif-
ically choosing the appropriate strategy (Figure 2). Alter-
natively, strategies may be employed hierarchically,
starting with damage tolerance, followed by damage spe-
cific end cleaning, followed by trial and error. Addition-
ally, the choice of processing factor may be determined
only by its affinity for a specific substrate, or might add-
itionally be regulated by access to its substrate.
Accumulating evidence implicates DNA-PKcs kinase

activity as the primary factor that could determine both
choice of strategy and processing factor. DNA-PKcs kin-
ase activity is dependent on end context, both in terms
of whether a pair of ends can be aligned together
[136,137], but also as a reflection of differences in end
structure [138-140]. Additionally (as noted above),
DNA-PKcs-mediated phosphorylation of Artemis
[107-112], PNKP [51,52], Tdp1 [65], WRN [119,125],
and XLF-X4-LIV [31] can affect the activity of these
proteins. However, DNA-PKcs itself is probably the
most relevant target (i.e., autophosphorylation), as
there are in excess of 30 different sites (reviewed in
[141]) that together may be sufficient for a “code,”
where phosphorylation of different patches has dis-
tinguishable effects on end access [142-144].
Events in the resolution of complex ends by NHEJ can

thus be, to some extent, left to chance, but can also be
precisely scripted. So, is it better to be lucky than good?
Why not both?
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