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Abstract

Background: Transgenic cattle carrying multiple genomic modifications have been produced by serial rounds of
somatic cell chromatin transfer (cloning) of sequentially genetically targeted somatic cells. However, cloning
efficiency tends to decline with the increase of rounds of cloning. It is possible that multiple rounds of cloning
compromise the genome integrity or/and introduce epigenetic errors in the resulting cell lines, rendering a decline
in cloning. To test these possibilities, we performed 9 high density array Comparative Genomic Hybridization (CGH)
experiments to test the genome integrity in 3 independent bovine transgenic cell lineages generated from genetic
modification and cloning. Our plan included the control hybridizations (self to self) of the 3 founder cell lines and
6 comparative hybridizations between these founders and their derived cell lines with either high or low cloning
efficiencies.

Results: We detected similar amounts of differences between the control hybridizations (8, 13 and 39 differences)
and the comparative analyses of both “high” and “low” cell lines (ranging from 7 to 57 with a mean of ~20).
Almost 75% of the large differences (>10 kb) and about 45% of all differences shared the same type (loss or gain)
and were located in nearby genomic regions across hybridizations. Therefore, it is likely that they were not true
differences but caused by systematic factors associated with local genomic features (e.g. GC contents).

Conclusions: Our findings reveal that large copy number variations are less likely to arise during genetic targeting
and serial rounds of cloning, fortifying the notion that epigenetic errors introduced from serial cloning may be
responsible for the cloning efficiency decline.

Keywords: genome integrity, cattle transgenic cell line, somatic cell cloning, array CGH

Findings
As embryonic stem cells are not available in the bovine
species, somatic cells have been used for genetic modifi-
cations, and transgenic cattle have been produced from
such genetically modified somatic cells by animal clon-
ing. However, because primary somatic cells have lim-
ited life span and inevitably become senescent following
DNA transfection and selection in cell culture, it is
impossible to perform any further genetic modifications
in these cells. Because of such, transgenic cattle with a

desired genotype that requires more than one genetic
targeting event, such as homozygous deletion of the two
alleles of a gene, cannot be produced. To overcome
such limitations, a novel sequential genetic modification
strategy in bovine somatic cells, for producing exten-
sively genetically modified cattle, has been developed
[1]. This process involves a serial round of genetic tar-
geting events, each followed by cloning to rejuvenate the
genetically modified somatic cells (to rescue them from
senescence) for the next round of genetic targeting.
Such genetically modified somatic cells are then sub-
jected to a final round of cloning for producing trans-
genic animals with the desired genotypes. While
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multiple genomic loci have been modified by this strat-
egy, cloning efficiency tends to decline with the
increased rounds of cloning, and in some severe cases,
such manipulated cells can become unclonable (no live
calf can be cloned from them) [2]. It is yet unknown
whether the cloning efficiency declines in such derived
cells are due to genetic abnormalities caused by the
multiple genetic targeting or/and serial cloning process
or due to the accumulation of epigenetic errors intro-
duced during these processes. Such questions are funda-
mental in farm animal transgenesis, as somatic cells and
cloning are currently the only choices for genetic modi-
fications and for transgenic animal production in the
domestic animal species.
To investigate whether the declines of cloning effi-

ciency in the cloned bovine transgenic cell lines are due
to large genomic deletions or insertions, 9 high density
array Comparative Genomic Hybridization (CGH)
experiments were performed to test the genome integ-
rity in 3 independent bovine transgenic cell lineages.
Array CGH allows the entire genome to be assayed for
the gain or loss of material in a single experiment by
measuring the relative hybridization intensity between
fluorescently labeled test and reference DNA samples. It
has been widely used in the detection of copy number
variations (CNVs). One objective of this study is to

develop array CGH into a systematic test for the geno-
mic integrity of donor cells after each round of genetic
modification before they are used as donors for produ-
cing transgenic animals.
We selected 3 independent cell lineages from our

transgenic bovine cell line collection. Each lineage
includes the founder and two derived cell lines, which
demonstrated dramatic differences in cloning efficiency
(Figure 1). The cloning efficiencies are represented by
the live calf counts at birth divided by recipient numbers
used for embryo transfer as shown in parentheses. Test
lines were classified into “high (H)” and “low (L)” based
on their cloning efficiencies, with 7%-42% live calving
rates designated as high and 0% as low. The procedures
for genetic modifications, animal cloning and transgenic
cell line establishment were described previously [1].
Genomic DNA samples were purified from the cell lines
using Qiagen Miniprep Kit as recommended by the
manufacturer. All DNA samples were analyzed by
Nanodrop spectrophotometer and agarose gel electro-
phoresis. Nine array CGH experiments were carried out
using each cell line as the test sample and the corre-
sponding founder line as the reference sample (Table 1).
Therefore, our plan included the control hybridizations
of the 3 founder cell lines (self to self) and 6 compara-
tive hybridizations between these founders and their
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Figure 1 Three cell lineages (founders and test cell lines) and their success rates for animal cloning. Live calving rates for the cell lines
were calculated by the live calf counts at birth divided by recipient numbers used for embryo transfer as shown in parentheses. Cell lines with
7% or more living rates are indicated as High (H; high calving rate) and those with 0% live calving rate as Low (L; low calving rate). The 3
founder cell lines (F1, F2 and F3) were established from 3 different fetuses (day 40) respectively that were produced by artificial insemination.
The 6 test cell lines, except for cell line L3, were derived from 2 rounds genetic modification and somatic cell cloning. L3 line was derived from
3 rounds of genetic modification and somatic cell cloning.
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derived cell lines of extreme phenotypes ("high” versus
“low” cloning efficiencies). Another self to self control
hybridization was performed using the sequenced Here-
ford cow L1 Dominette 01449 (Dt, American Hereford
Association registration number 42190680). Each CGH
array contains ~2.1 million oligonucleotide probes that
provide a genome-wide coverage with an average inter-
val of ~1.2 kb (kilo basepairs) on the UMD3 genome
assemblies [3]. DNA labeling, hybridizations, array scan-
ning, data normalization, and segmentation were per-
formed as described before [4,5]. The genomic
variations were represented by gains and losses of nor-
malized fluorescence intensities relative to the reference.
The calls are filtered according to the similar criteria as
described previously [6]. Briefly, we tested a series of
log2 ratio shift and affected neighboring probe counts
and their impact on the false discovery rate in the self-
self control hybridizations. We then selected a calling
criterion, requiring that alternations of 0.5 log2 ratios
over 5 neighboring probes, under which minimal false
positives were found for self-self control hybridizations.
Thus, the arrays have a resolution of approximately 4.8
kb. Nine array CGH data have been submitted to the
gene expression omnibus (http://www.ncbi.nlm.nih.gov/
geo/) under the accession number GSE26132.
We detected 8, 13 and 39 differences in 3 control

hybridizations. Similar amounts of differences (ranging
from 7 to 57 with a mean of ~20) were detected in
comparative analyses of both “high” and “low” derived
cell lines (Table 1 and Table 2). We also made event
calls on Btau_4.0 and obtained a comparable number of
events (data not shown). Almost 75% of the large differ-
ences (>10 kb, 42/58 events in Table 2) and about 45%
of all differences (82/186 events) shared the same type
(loss or gain) and were located in nearby genomic
regions across hybridizations. Therefore, it is likely that
they were not true differences but instead caused by sys-
tematic factors like dye bias (Cy3 versus Cy5) or geno-
mic waves associated with local genomic features, such
as GC contents [7]. For example, a variable region of

Table 1 Hybridization plan and event counts

No Test Ref Type Events

1 F1 F1 Self1 13

2 H1 F1 High1 13

3 L1 F1 Low1 7

4 F2 F2 Self2 8

5 H2 F2 High2 7

6 L2 F2 Low2 57

7 F3 F3 Self3 39

8 H3 F3 High3 17

9 L3 F3 Low3 22

10 Dt Dt Self4 3

Table 2 Copy number variation events larger than 10 kb

No Type Chr Start End Length Log R Shared

1 Self1 chr13 48,998,999 49,016,999 18,000 0.5168 Yes

chr3 1,020,294 1,039,699 19,405 0.6721 Yes

chr4 41,465,452 41,496,569 31,117 0.6946 Yes

2 High1 chr13 48,992,999 49,010,999 18,000 0.6269 Yes

chr3 1,020,294 1,039,699 19,405 0.6410 Yes

chr4 33,570,495 33,584,300 13,805 0.5216 Yes

chr4 41,465,452 41,496,569 31,117 0.5674 Yes

3 Low1 chr13 48,991,360 49,017,997 26,637 0.6818 Yes

chr29 19,400,430 19,449,274 48,844 0.5343 Yes

chr3 1,020,294 1,042,839 22,545 0.7566 Yes

chr4 41,465,452 41,496,569 31,117 0.8130 Yes

4 Self2 chr13 48,991,360 49,017,997 26,637 0.5172 Yes

chr3 1,020,294 1,042,839 22,545 0.6039 Yes

chr4 41,465,452 41,496,569 31,117 0.5761 Yes

5 High2 chr25 32,373,045 32,464,814 91,769 0.6769 Yes

6 Low2 chr11 87,532,580 87,543,090 10,510 -0.5617 No

chr2 16,958,057 16,968,620 10,563 -0.5814 No

chr25 32,374,157 32,471,634 97,477 -0.8136 Yes

chr29 43,204,051 43,223,301 19,250 -0.5334 No

chrX 10,447,331 10,457,486 10,155 -0.9137 No

7 Self3 chr1 5,249,999 5,285,999 36,000 0.5481 Yes

chr10 59,478,526 59,531,204 52,678 0.5501 No

chr13 48,991,360 49,017,997 26,637 0.6809 Yes

chr15 26,576,999 26,602,199 25,200 0.6474 Yes

chr2 39,223,655 39,235,168 11,513 -0.5661 No

chr25 32,374,157 32,471,634 97,477 -0.6113 Yes

chr29 19,399,250 19,449,274 50,024 0.6094 Yes

chr3 1,020,294 1,039,699 19,405 0.8678 Yes

chr4 27,707,990 27,750,008 42,018 0.5614 No

chr4 41,465,452 41,496,569 31,117 0.8426 Yes

chr6 45,738,703 45,776,348 37,645 0.5049 Yes

chr6 89,209,799 89,220,599 10,800 0.6477 Yes

chr8 36,073,799 36,145,799 72,000 0.5122 Yes

chrX 37,290,568 37,303,155 12,587 0.8150 No

chrX 37,564,199 37,614,599 50,400 0.5427 No

chrX 56,120,456 56,149,298 28,842 0.6124 No

chrX 84,230,177 84,255,543 25,366 0.5679 No

chrX 138,374,999 138,386,999 12,000 0.5528 No

8 High3 chr13 48,993,325 49,013,328 20,003 0.5149 Yes

chr15 26,576,999 26,602,199 25,200 0.6022 Yes

chr25 32,374,157 32,403,637 29,480 -0.8278 Yes

chr4 33,564,599 33,578,999 14,400 0.5363 Yes

chr4 41,466,599 41,495,399 28,800 0.5097 Yes

chr6 45,744,065 45,772,999 28,934 0.5284 Yes

9 Low3 chr1 5,249,999 5,285,999 36,000 0.5559 Yes

chr1 144,107,850 144,130,905 23,055 0.5949 No

chr13 48,991,360 49,017,997 26,637 0.6031 Yes

chr17 73,139,605 73,159,081 19,476 -2.0603 No

chr18 6,080,815 6,121,152 40,337 -0.5749 No

chr25 32,362,844 32,470,747 107,903 0.6669 Yes

chr29 19,412,812 19,444,215 31,403 0.6690 Yes
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chr25:27220643-27226199 from UMD3 (5.5 kb) was
found in hybridizations of High1, Self3 and High3.
Using liftOver, we migrated this region to its corre-
sponding region at chr25:28829889-28835660 on
Btau_4.0. The GC% track and array CGH probe track
are shown in the UCSC genome browser snapshot
(Figure 2). Although each probe has a GC% range from
42-48%, the average GC% of this region (53.5%) is sig-
nificantly higher than the cattle genome average of
41.7% and multiple GC% peaks exist in the close proxi-
mity of 3 out of the 6 probes. Out of 186 events, 129
events are unique after merging the overlapped events
(data not shown). Out of these 129 unique events, 71
events can be successfully migrated from UMD3 to
Btau_4.0 and all of them showed various degrees of
higher GC contents as compared to the genome average.
In this project, we employed array CGH to study geno-

mic integrity in cattle transgenic cell lines. This high-
resolution genome-wide survey fills the knowledge gaps
left out in the existing literature. Our results generate a
valuable tool for genomic integrity evaluation and largely

exclude the occurrences of large genomic structural var-
iations (≥ 10 kb) during animal cloning, supporting our
recent findings that epigenetic errors introduced by mul-
tiple rounds of cloning and/or genetic targeting are the
possible underlying causes for the cloning efficiency
decline [8,9]. However, this initial genomic integrity sur-
vey reported here is probably not complete as the CGH
arrays were designed by using only one reference gen-
ome. As a result, sequences absent in Dominette and pre-
sent in other animals cannot be ascertained. Also, array
CGH cannot detect small event (<5 kb) and balanced
events like inversions and translocations. Therefore, we
cannot totally exclude the possibility that both genetic
and epigenetic influences may be at work and genetic dif-
ferences may have played a role in the low efficiencies.
With the costs of genome sequencing dropping dramati-
cally by using next-generation sequencing, emerging
high-quality cattle genomic sequence will soon facilitate
the application of the direct sequence comparison strat-
egy. Furthermore, additional studies like epigenomics are
warranted and may unravel the epigenetic basis for the
successful and efficient animal cloning.
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Table 2 Copy number variation events larger than 10 kb
(Continued)

chr3 1,020,599 1,038,599 18,000 0.6787 Yes

chr4 33,564,599 33,578,999 14,400 0.6100 Yes

chr4 41,465,452 41,487,890 22,438 0.6229 Yes

chr6 89,208,198 89,218,288 10,090 0.6937 Yes

chr8 36,077,399 36,152,999 75,600 0.5089 Yes

chrU 12,620,478 12,665,758 45,280 0.7441 No

10 Self4 chr13 48,992,999 49,010,999 18,000 0.5729 Yes

Chr: chromosome, Log R: log2Ratio, Shared: Yes/No - events shared among
samples (i.e. hybridizations) or not.
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Figure 2 False positive event calls could be due to high GC content. A 5.5 kb variable region (chr25:28829889-28835660) was identified in
one control self to self array CGH. GC Percent in 5-Base Windows, Array CGH probe, Gap, RefSeq Gene and Repeat tracks are displayed in
Btau_4.0. The GC percent track shows the percentage of G (guanine) and C (cytosine) bases in 5-base windows. The horizontal line at 41.7 in GC
percent track represents the genome average of GC%. Probe locations are labeled like CHR25FS027220642 and etc.
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